Towards a cluster structure on trigonometric zastava

  • Michael Finkelberg
  • Alexander Kuznetsov
  • Leonid Rybnikov
  • Galyna Dobrovolska
Article
  • 23 Downloads

Abstract

We study a moduli problem on a nodal curve of arithmetic genus 1, whose solution is an open subscheme in the zastava space for projective line. This moduli space is equipped with a natural Poisson structure, and we compute it in a natural coordinate system. We compare this Poisson structure with the trigonometric Poisson structure on the transversal slices in an affine flag variety. We conjecture that certain generalized minors give rise to a cluster structure on the trigonometric zastava.

Mathematics Subject Classification

13F60 14M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezrukavnikov, R., Finkelberg, M., Mirković, I.: Equivariant homology and \(K\)-theory of affine Grassmannians and Toda lattices. Compos. Math. 141(3), 746–768 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braverman, A., Finkelberg, M.: Semi-infinite Schubert varieties and quantum \(K\)-theory of flag manifolds. J. Am. Math. Soc. 27, 1147–1168 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Braverman, A., Finkelberg, M.: Weyl modules and \(q\)-Whittaker functions. Math. Ann. 359, 45–59 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Braverman, A., Dobrovolska, G., Finkelberg, M.: Gaiotto-Witten superpotential and Whittaker D-modules on monopoles. Adv. Math. 300, 451–472 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Braverman, A., Finkelberg, M., Nakajima, H.: Towards a Mathematical Definition of 3-Dimensional \({\cal{N}}=4\) Gauge Theories, II, arXiv:1601.03586
  6. 6.
    Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb Branches of \(3d {\cal{N}} =4\) Quiver Gauge Theories and Slices in the Affine Grassmannian, arXiv:1604.03625
  7. 7.
    Etingof, P., Schiffmann, O.: Lectures on Quantum Groups, 2nd edition. Lectures in Mathematical Physics. International Press, Somerville, xii+242 pp (2002)Google Scholar
  8. 8.
    Faybusovich, L., Gekhtman, M.: Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices. Phys. Lett. A 272(4), 236–244 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feigin, B., Odesskii, A.: Vector bundles on Elliptic Curves and Sklyanin Algebras, Topics in quantum groups and finite-type invariants. Am. Math. Soc. Transl. Ser. 2, 185, Am. Math. Soc. Providence, RI 65–84 (1998)Google Scholar
  10. 10.
    Finkelberg, M., Kuznetsov, A., Markarian, N., Mirković, I.: A note on a symplectic structure on the space of \(G\)-monopoles. Commun. Math. Phys. 201, 411–421 (1999). Erratum, Commun. Math. Phys. 334, 1153–1155 (2015); arXiv:math/9803124, v6
  11. 11.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs 167. American Mathematical Society, Providence, RI (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective. Acta Math. 206(2), 245–310 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goncharov, A., Shen, L.: Geometry of canonical bases and mirror symmetry. Inv. Math. 202, 487–633 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Helmke, U., Fuhrmann, P.A.: Bezoutians. Linear Algebra Appl. 122(123/124), 1039–1097 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jarvis, S.: Euclidean monopoles and rational maps. Proc. Lond. Math. Soc. (3) 77(1), 170–192 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jarvis, S.: Construction of Euclidean monopoles. Proc. Lond. Math. Soc. (3) 77(1), 193–214 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite-dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, xii+145 pp (1987)Google Scholar
  18. 18.
    Kamnitzer, J., Webster, B., Weekes, A., Yakobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kronecker, L.: Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen, Werke 2, pp. 113–192. Teubner, Leipzig (1897)Google Scholar
  20. 20.
    Leclerc, B.: Cluster structures on strata of flag varieties. Adv. Math. 300, 190–228 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lu, J.-H., Yakimov, M.: Group orbits and regular partitions of Poisson manifolds. Comm. Math. Phys. 283(3), 729–748 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lenagan, T.H., Yakimov, M.: Prime Factors of Quantum Schubert Cell Algebras and Clusters for Quantum Richardson Varieties. arXiv:1503.06297
  23. 23.
    Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Spaide, T.: Shifted Symplectic and Poisson Structures on Spaces of Framed Maps. arXiv:1607.03807
  25. 25.
    Yu, U.A., Cherkasov, T.M.: The search for the maximum of a polynomial. J. Symb. Comput. 25(5), 587–618 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Michael Finkelberg
    • 1
    • 2
  • Alexander Kuznetsov
    • 3
    • 4
    • 5
  • Leonid Rybnikov
    • 1
    • 6
  • Galyna Dobrovolska
    • 7
  1. 1.Department of MathematicsNational Research University Higher School of Economics, Russian FederationMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia
  3. 3.Algebraic Geometry SectionSteklov Mathematical InstituteMoscowRussia
  4. 4.Laboratory of Algebraic GeometryNational Research University Higher School of Economics, Russian FederationMoscowRussia
  5. 5.The Poncelet LaboratoryIndependent University of MoscowMoscowRussia
  6. 6.Institute for the Information Transmission Problems of RASMoscowRussia
  7. 7.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations