Selecta Mathematica

, Volume 22, Issue 4, pp 2491–2534 | Cite as

Intersection cohomology of the Uhlenbeck compactification of the Calogero–Moser space

  • Michael Finkelberg
  • Victor Ginzburg
  • Andrei Ionov
  • Alexander Kuznetsov


We study the natural Gieseker and Uhlenbeck compactifications of the rational Calogero–Moser phase space. The Gieseker compactification is smooth and provides a small resolution of the Uhlenbeck compactification. We use the resolution to compute the stalks of the IC-sheaf of the Uhlenbeck compactification.

Mathematics Subject Classification

58B25 16532 14F43 


  1. 1.
    Artin, M., Zhang, J.: Noncommutative projective schemes. Adv. Math. 109, 228–287 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baranovsky, V., Ginzburg, V., Kuznetsov, A.: Quiver varieties and a noncommutative \({\mathbb{P}}^2\). Compositio Math. 134, 283–318 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux Pervers. Astérisque 100, 5–171 (1982)MathSciNetGoogle Scholar
  4. 4.
    Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8, 209–216 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Braverman, A., Finkelberg, M., Gaitsgory, D.: Uhlenbeck Spaces via Affine Lie Algebras. The Unity of Mathematics, 17–135, Prog. Math., 244, Birkhäuser Boston, Boston, MA (2006)Google Scholar
  6. 6.
    Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian I: Transversal slices via instantons on \(A_k\)-singularities. Duke Math. J. 152, 175–206 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dolgachev, I., Hu, Y.: Variation of geometric invariant theory quotients, with an appendix by Nicolas Ressayre. Inst. Hautes Études Sci. Publ. Math. 87, 5–56 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Kapustin, A., Kuznetsov, A., Orlov, D.: Noncommutative instantons and twistor transform. Commun. Math. Phys. 220, 385–432 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kashiwara, M., Schapira, P.: Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer-Verlag, Berlin (1994)Google Scholar
  11. 11.
    Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. 31, 481–507 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    King, A.D.: Quart. J. Math. Oxford Ser. (2). Moduli of representations of finite-dimensional algebras 45(180), 515–530 (1994)Google Scholar
  13. 13.
    Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series 18. American Mathematical Society, Providence, RI (1999)Google Scholar
  14. 14.
    de Naeghel, K., Van den Bergh, M.: Ideal classes of three dimensional Sklyanin algebras. J. Algebra 283, 399–429 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nekrasov, N., Schwarz, A.: Instantons on noncommutative \({\mathbb{R}}^4\) and \((2,0)\)-superconformal six-dimensional theory. Commun. Math. Phys. 198, 689–703 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Nevins, T.A., Stafford, J.T.: Sklyanin algebras and Hilbert schemes of points. Adv. Math. 210, 405–478 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rudakov, A.: Stability for an abelian category. J. Algebra 197, 231–245 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wilson, G.: Collisions of Calogero-Moser particles and an adelic Grassmannian, With an appendix by I. G. Macdonald. Invent. Math. 133, 1–41 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Michael Finkelberg
    • 1
    • 2
  • Victor Ginzburg
    • 3
  • Andrei Ionov
    • 1
  • Alexander Kuznetsov
    • 4
    • 5
    • 6
  1. 1.Department of MathematicsNational Research University Higher School of Economics, Russian FederationMoscowRussia
  2. 2.Institute for Information Transmission ProblemsMoscowRussian Federation
  3. 3.Department of MathematicsUniversity of ChicagoChicagoUSA
  4. 4.Steklov Mathematical InstituteAlgebraic Geometry SectionMoscowRussian Federation
  5. 5.The Poncelet Laboratory, Independent University of Moscow, Russian FederationMoscowRussia
  6. 6.Laboratory of Algebraic GeometryNational Research University Higher School of Economics, Russian FederationMoscowRussia

Personalised recommendations