Selecta Mathematica

, Volume 23, Issue 2, pp 1235–1247 | Cite as

Analogues of Gersten’s conjecture for singular schemes

Article

Abstract

We formulate analogues, for Noetherian local \({\mathbb {Q}}\)-algebras which are not necessarily regular, of the injectivity part of Gersten’s conjecture in algebraic K-theory and prove them in various cases. Our results suggest that the algebraic K-theory of such a ring should be detected by combining the algebraic K-theory of both its regular locus and the infinitesimal thickenings of its singular locus.

Keywords

Gersten’s conjecture Algebraic K-theory Singular schemes 

Mathematics Subject Classification

Primary 19E08 Secondary 14B05 

References

  1. 1.
    Cortiñas, G., Guccione, J., Guccione, J.: Decomposition of the Hochschild and cyclic homology of commutative differential graded algebras. J. Pure Appl. Algebra 83(3), 219–235 (1992)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C.: Cyclic homology, cdh-descent and negative \(K\). Ann. Math. 167, 549–573 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Hartshorne, R.: Algebraic geometry. In: Axler, S., Gehring, F.W., Ribet, K.A. (eds.) Graduate Texts in Math, vol. 52. Springer, New York (1977)Google Scholar
  4. 4.
    Feĭgin, B.L., Tsygan, B.L.: Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen 19(2), 52–62, 96 (1985) (Russian) Google Scholar
  5. 5.
    Kassel, A., Sletsjøe, A.: Base change, transitivity and Künenth formulas for Quillen decomposition of Hochschild homology. Math. Scand. 70(2), 186–192 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Krishna, A.: On \(K_{2}\) of one-dimensional local rings. K-Theory 35(1–2), 139–158 (2005)MATHMathSciNetGoogle Scholar
  7. 7.
    Loday, J.-L.: Cyclic homology. In: Berger, M., Eckmann, B., Varadhan, S.R.S. (eds.) Grundlehren der Mathematischen Wissenschaften, vol. 301. Springer, Berlin (1992). Appendix E by María O. RoncoGoogle Scholar
  8. 8.
    Morrow, M.: Pro cdh-descent for cyclic homology and \(K\)-theory. J. Inst. Math. Jussieu 15(3), 539–567 (2016)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Morrow, M.: Pro unitality and pro excision in algebraic \(K\)-theory and cyclic homology. J. Reine Angew. Math. (2015)Google Scholar
  10. 10.
    Morrow, M.: \(K\)-theory of one-dimensional rings via pro-excision. J. Inst. Math. Jussieu 13(2), 225–272 (2014)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Morrow, M.: A singular analogue of Gersten’s conjecture and applications to \(K\)-theoretic adèles. Comm. Algebra 43(11), 4951–4983 (2015)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Nesterenko, Y., Suslin, A.: Homology of general linear group over a local ring and Milnor \(K\)-theory. Izv. Akad. Nauk SSSR Ser. Mat. 53(1), 121–146 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Soulé, C.: Opérations en \(K\)-théorie algébrique. Canad. J. Math. 37(3), 488–550 (1985)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Temkin, M.: Desingularization of quasi-excellent schemes in characteristic zero. Adv. Math. 219(2), 488–522 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Weibel, C.: Cyclic homology for schemes. Proc. AMS 124(6), 1655–1662 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Weibel, C.: An introduction to homological algebra. In: Garling, D.J.H., tom Dieck, T., Walters, P. (eds.) Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.MumbaiIndia
  2. 2.BonnGermany

Personalised recommendations