Advertisement

Selecta Mathematica

, Volume 23, Issue 2, pp 817–868 | Cite as

Categories generated by a trivalent vertex

  • Scott Morrison
  • Emily Peters
  • Noah Snyder
Article

Abstract

This is the first paper in a general program to automate skein theoretic arguments. In this paper, we study skein theoretic invariants of planar trivalent graphs. Equivalently, we classify trivalent categories, which are nondegenerate pivotal tensor categories over Open image in new window generated by a symmetric self-dual simple object X and a rotationally invariant morphism \(1 \rightarrow X \otimes X \otimes X\). Our main result is that the only trivalent categories with \(\dim {\text {Hom}}(1 \rightarrow X^{\otimes n})\) bounded by 1, 0, 1, 1, 4, 11, 40 for \(0 \le n \le 6\) are quantum SO(3), quantum \(G_2\), a one-parameter family of free products of certain Temperley-Lieb categories (which we call ABA categories), and the H3 Haagerup fusion category. We also prove similar results where the map \(1 \rightarrow X^{\otimes 3}\) is not rotationally invariant, and we give a complete classification of nondegenerate braided trivalent categories with dimensions of invariant spaces bounded by the sequence 1, 0, 1, 1, 4. Our main techniques are a new approach to finding skein relations which can be easily automated using Gröbner bases, and evaluation algorithms which use the discharging method developed in the proof of the 4-color theorem.

Mathematics Subject Classification

18D10 (Monoidal Categories) 05C10 (Planar graphs; geometric and topological aspects of graph theory) 57M27 (Invariants of knots and 3-manifolds) 

Notes

Acknowledgments

Scott Morrison was supported by an Australian Research Council Discovery Early Career Researcher Award DE120100232, and Discovery Projects DP140100732 and DP160103479. Emily Peters was supported by the NSF Grant DMS-1501116. Noah Snyder was supported by the NSF Grant DMS-1454767. All three authors were supported by DOD-DARPA Grant HR0011-12-1-0009. Scott Morrison would like to thank the Erwin Schrödinger Institute and its 2014 programme on “Modern Trends in Topological Quantum Field Theory” for their hospitality. We would like to thank Greg Kuperberg for a blog comment [37] suggesting applying the discharging method to skein theory, Victor Ostrik for explaining his construction of the twisted Haagerup categories, and David Roe and Dylan Thurston for helpful suggestions.

References

  1. 1.
    Asaeda M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \((5+\sqrt{13})/2\) and \((5+\sqrt{17})/2\). Commun. Math. Phys. 202(1), 1–63, (1999). doi: 10.1007/s002200050574. arXiv:math.OA/9803044
  2. 2.
    Bisch, D., Jones, V.F.R.: Singly generated planar algebras of small dimension. Duke Math. J. 101(1), 41–75 (2000). doi: 10.1215/ S0012-7094-00-10112-3
  3. 3.
    Bisch, D., Jones, V.: Singly generated planar algebras of small dimension. II. Adv. Math. 175(2), 297–318 (2003). doi: 10.1016/S0001-8708(02)00060-9 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bisch, D., Jones, V.F.R., Liu, Z.: Singly Generated Planar Algebras of Small Dimension, Part III (2014). arXiv:1410.2876
  5. 5.
    Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 209(1), 29–82 (2012). doi: 10.1007/s11511-012-0081-7. arXiv:0909.4099
  6. 6.
    Barrett, J.W., Westbury, B.W.: Spherical categories. Adv. Math. 143(2), 357–375 (1999). doi: 10.1006/aima.1998.1800. arXiv:hep-th/9310164
  7. 7.
    Clark, S., Wang, W.: Canonical basis for quantum \(\mathfrak{osp}(1\vert 2)\). Lett. Math. Phys. 103(2), 207–231 (2013). doi: 10.1007/s11005-012-0592-3. arXiv:1204.3940
  8. 8.
    Deligne, P.: La série exceptionnelle de groupes de Lie. C. R. Acad. Sci. Paris Sér. I Math 322(4), 321–326 (1996)MathSciNetGoogle Scholar
  9. 9.
    Deligne, P.: Catégories tensorielles. Mosc. Math. J. 2(2), 227–248 (2002). (Dedicated to Yuri I. Manin on the occasion of his 65th birthday). http://www.ams.org/distribution/mmj/vol2-2-2002/deligne.pdf
  10. 10.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories. I. Selecta Math. (N.S.), 16(1), 1–119 (2010). doi: 10.1007/s00029-010-0017-z. arXiv:0906.0620
  11. 11.
    Demillo, R., Lipton, R.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Evans, D.E., Gannon, T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307(2), 463–512 (2011). doi: 10.1007/s00220-011-1329-3. arXiv:1006.1326
  13. 13.
    Evans, D.E., Gannon, T.: Near-group fusion categories and their doubles. Adv. Math. 255, 586–640 (2014). doi: 10.1016/j.aim.2013.12.014. arXiv:1208.1500
  14. 14.
    Etingof, P., Gelaki, S., Ostrik, V.: Classification of fusion categories of dimension \(pq\). Int. Math. Res. Not. 2004(57), 3041–3056 (2004). doi: 10.1155/S1073792804131206. arXiv:math.QA/0304194
  15. 15.
    Grossman, P., Izumi, M.: Classification of noncommuting quadrilaterals of factors. Int. J. Math. 19(5), 557–643 (2008). doi: 10.1142/S0129167X08004807. arXiv:0704.1121
  16. 16.
    Grossman, P., Jones, V.F.R.: Intermediate subfactors with no extra structure. J. Am. Math. Soc. 20(1), 219–265 (2007). doi: 10.1090/S0894-0347-06-00531-5. arXiv:math/0412423
  17. 17.
    Grossman, P., Snyder, N.: The Brauer–Picard group of the Asaeda–Haagerup fusion categories. Trans. Am. Math. Soc. (2012). doi: 10.1090/tran/6364. arXiv:1202.4396
  18. 18.
    Grossman, P., Snyder, N.: Quantum subgroups of the Haagerup fusion categories. Commun. Math. Phys. 311(3), 617–643 (2012). doi: 10.1007/s00220-012-1427-x. arXiv:1102.2631
  19. 19.
    Izumi, M., Morrison, S., Penneys, D.: Quotients of \(A_2 * T_2\). 2013. Extended version available as “Fusion categories between \({\cal C} \boxtimes {\cal D}\) and \(\cal C *\cal D\)”. doi: 10.4153/CJM-2015-017-4. arXiv:1308.5723
  20. 20.
    Izumi, M.: A Cuntz algebra approach to the classification of near-group categories. In: Proceedings of the Centre for Mathematics and its Applications (to appear). arXiv:1512.04288
  21. 21.
    Jaeger, F.: Strongly regular graphs and spin models for the Kauffman polynomial. Geom. Dedic. 44(1), 23–52 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. (N.S.) 12(1), 103–111 (1985). doi: 10.1090/S0273-0979-1985-15304-2
  23. 23.
    Jones, V.F.R.: Planar algebras I. (1999). arXiv:math.QA/9909027
  24. 24.
    Kobayashi, K.: Representation theory of \({\rm osp}(1,2)_q\). Z. Phys. C 59(1), 155–158 (1993). doi: 10.1007/BF01555850 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kuperberg, G.: The quantum \(G_2\) link invariant. Int. J. Math. 5(1), 61–85 (1994). doi: 10.1142/S0129167X94000048. arXiv:math.QA/9201302
  26. 26.
    Kuperberg, G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180(1), 109–151 (1996). euclid.cmp/1104287237. arXiv:q-alg/9712003
  27. 27.
    Kuperberg, G.: Jaeger’s Higman-Sims state model and the \(B_2\) spider. J. Algebra 195(2), 487–500 (1997). doi: 10.1006/jabr.1997.7045. arXiv:math/9601221
  28. 28.
    Kazhdan, D., Wenzl, H.: Reconstructing monoidal categories. In: I. M. Gel\(^{^{\prime }}\) fand Seminar, Volume 16 of Advances in Soviet Mathematics, pp. 111–136. American Mathematical Society, Providence, RI (1993) (preview at google books)
  29. 29.
    Landau, Z.A.: Exchange relation planar algebras. In: Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), vol. 95, pp. 183–214 (2002)Google Scholar
  30. 30.
    Morrison, S., Peters, E., Snyder, N.: Skein theory for the \({\cal D}_{2n}\) planar algebras. J. Pure Appl. Algebra 214(2), 117–139 (2010). doi: 10.1016/j.jpaa.2009.04.010. arXiv:0808.0764
  31. 31.
    Morrison, S., Peters, E., Snyder, N.: Knot polynomial identities and quantum group coincidences. Quantum Topol. 2(2), 101–156 (2011). doi: 10.4171/QT/16. arXiv:1003.0022
  32. 32.
    Morrison, S., Snyder, N.: Subfactors of index less than 5. Part 1: The principal graph odometer. Commun. Math. Phys. 312(1), 1–35 (2012). doi: 10.1007/s00220-012-1426-y. arXiv:1007.1730
  33. 33.
    Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”. Ann. Math. 2(43), 223–243 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    The On-Line Encyclopedia of Integer Sequences. http://oeis.org
  35. 35.
    Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 2003(27), 1507–1520 (2003). doi: 10.1155/S1073792803205079. arXiv:math/0202130
  36. 36.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980). doi: 10.1145/322217.322225 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Secret Blogging Seminar. How to almost prove the 4-color theorem (2009). http://sbseminar.wordpress.com/2009/10/07/how-to-almost-prove-the-4-color-theorem/. Accessed 28 Dec 2014
  38. 38.
    Siehler, J.: Near-group categories. Algebr. Geom. Topol. 3, 719–775 (2003). doi: 10.2140/agt.2003.3.719. arXiv:math/0209073
  39. 39.
    Speicher, R.: Multiplicative functions on the lattice of noncrossing partitions and free convolution. Math. Ann. 298(4), 611–628 (1994). doi: 10.1007/BF01459754 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2, Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). doi: 10.1017/CBO9780511609589
  41. 41.
    Sikora, A.S., Westbury, B.W.: Confluence theory for graphs. Algebr. Geom. Topol. 7, 439–478 (2007). doi: 10.2140/agt.2007.7.439. arXiv:math.QA/0609832
  42. 42.
    Thurston, D.P.: From Dominoes to Hexagons. In: Proceedings of the Centre for Mathematics and its Applications (to appear). arXiv:math/0405482
  43. 43.
    Thurston, D.P.: The \(F_4\) and \(E_6\) families have a finite number of points (2004). www.math.columbia.edu/~dpt/writing/F4E6.ps
  44. 44.
    Tuba, I., Wenzl, H.: On braided tensor categories of type \(BCD\). J. Reine Angew. Math. 581:31–69 (2005). doi: 10.1515/crll.2005.2005.581.31. arXiv:math.QA/0301142
  45. 45.
    Vogel, P.: Algebraic structures on modules of diagrams. J. Pure Appl. Algebra 215(6), 1292–1339 (2011). doi: 10.1016/j.jpaa.2010.08.013 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and Algebraic Computation (EUROSAM ’79, International Symposium, Marseille, 1979), Volume 72 of Lecture Notes in Computer Science, pp. 216–226. Springer, Berlin (1979)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteThe Australian National UniversityCanberraAustralia
  2. 2.Loyola University ChicagoChicagoUSA
  3. 3.Indiana University BloomingtonBloomingtonUSA

Personalised recommendations