Advertisement

Selecta Mathematica

, Volume 23, Issue 1, pp 1–14 | Cite as

Representation schemes and rigid maximal Cohen–Macaulay modules

  • Hailong Dao
  • Ian Shipman
Article
  • 168 Downloads

Abstract

Let \(\mathbf {k}\) be an algebraically closed field and A be a finitely generated, centrally finite, nonnegatively graded (not necessarily commutative) \(\mathbf {k}\)-algebra. In this note we construct a representation scheme for graded maximal Cohen–Macaulay A modules. Our main application asserts that when A is commutative with an isolated singularity, for a fixed multiplicity, there are only finitely many indecomposable rigid (i.e, with no nontrivial self-extensions) MCM modules up to shifting and isomorphism. We appeal to a result by Keller, Murfet, and Van den Bergh to prove a similar result for rings that are completion of graded rings. Finally, we discuss how finiteness results for rigid MCM modules are related to recent work by Iyama and Wemyss on maximal modifying modules over compound Du Val singularities.

Mathematics Subject Classification

Primary 13C14 Secondary 14D20 

Notes

Acknowledgments

We are delighted to thank Bhargav Bhatt and Igor Burban for interesting conversations and correspondence, and Srikanth Iyengar and Michael Wemyss for many helpful comments on an earlier version of this article. The authors are partially supported by NSF awards DMS-1104017 and DMS-1204733.

References

  1. 1.
    Brown, K.A., Hajarnavis, C.R., MacEacharn, A.B.: Rings of finite global dimension integral over their centres. Comm. Algebra 11(1), 67–93 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cuntz, J., Quillen, D.: Algebra extensions and nonsingularity. J. Am. Math. Soc. 8(2), 251–289 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chrstensen, Lars Winther, Sather-Wagstaff, Sean: A Cohen–Macaulay algebra has only finitely many semidualizing modules. Math. Proc. Cambridge Philos. Soc. 145(3), 601–603 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dao, H., Peeva, Irena: Some homological properties of modules over a complete intersection, with applications. In: Peeva, Irena (ed.) Commutative Algebra, pp. 335–371. Springer, New York (2013)CrossRefGoogle Scholar
  6. 6.
    Dao, H., Huneke, C.: Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings. Am. J. Math. 135(2), 561–578 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dao, H., Kurano, K.: Boundary and shape of the Cohen–Macaulay cone. Math. Ann. 364, 713–736 (2016). doi: 10.1007/s00208-015-1231-y MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gabriel, P.: Finite representation type is open. In: Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, pp. 23. Carleton Math. Lecture Notes, No. 9. Carleton Univ., Ottawa, Ont. (1974)Google Scholar
  9. 9.
    Happel, D.: Selforthogonal modules. In: Abelian groups and modules (Padova, 1994), volume 343 of Math. Appl., pp. 257–276. Kluwer Acad. Publ., Dordrecht (1995)Google Scholar
  10. 10.
    Iyama, O., Wemyss, M.: Maximal modifications and Auslander-Reiten duality for non-isolated singularities. Invent. Math. 197(3), 521–586 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karroum, N.: MCM-einfache moduln. PhD dissertation – Ruhr-Universität Bochum (2009)Google Scholar
  13. 13.
    Keller, B., Murfet, D., Van den Bergh, M.: On two examples by Iyama and Yoshino. Compos. Math. 147(2), 591–612 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kontsevich, M., Rosenberg, A.L.: Noncommutative smooth spaces. In: The Gelfand Mathematical Seminars, 1996–1999, Gelfand Math. Sem., pp. 85–108. Birkhäuser Boston, Boston, MA (2000)Google Scholar
  15. 15.
    Kraft, H.: Geometric methods in representation theory. In: Representations of algebras (Puebla, 1980), volume 944 of Lecture Notes in Math., pp. 180–258. Springer, Berlin-New York (1982)Google Scholar
  16. 16.
    Le Bruyn, L.: Noncommutative geometry and Cayley-smooth orders, volume 290 of Pure and Applied Mathematics (BocaRaton). Chapman & Hall/CRC, Boca Raton, FL (2008)Google Scholar
  17. 17.
    Macleod, M.: Generalising the Cohen–Macaulay condition and other homological properties. PhD dissertation, University of Glasgow (2010)Google Scholar
  18. 18.
    Schofield, A.: General representations of quivers. Proc. London Math. Soc. (3) 65(1), 46–64 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Voigt, D.: Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen. Lecture Notes in Mathematics, vol. 592. Springer, Berlin-New York. Mit einer englischen Einführung (1977)Google Scholar
  20. 20.
    Wemyss, M.: Aspects of the homological minimal model program (2015). arXiv:1411.7189 [math.AG, math.RT]
  21. 21.
    Yoshino, Y.: Cohen–Macaulay modules over Cohen–Macaulay rings, volume 146 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1990)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.LawrenceUSA
  2. 2.Salt Lake CityUSA

Personalised recommendations