Selecta Mathematica

, Volume 21, Issue 1, pp 1–199 | Cite as

Singular support of coherent sheaves and the geometric Langlands conjecture

  • D. Arinkin
  • D. Gaitsgory


We define the notion of singular support of a coherent sheaf on a quasi-smooth-derived scheme or Artin stack, where “quasi-smooth” means that it is a locally complete intersection in the derived sense. This develops the idea of “cohomological” support of coherent sheaves on a locally complete intersection scheme introduced by D. Benson, S. B. Iyengar, and H. Krause. We study the behavior of singular support under the direct and inverse image functors for coherent sheaves. We use the theory of singular support of coherent sheaves to formulate the categorical geometric Langlands conjecture. We verify that it passes natural consistency tests: It is compatible with the geometric Satake equivalence and with the Eisenstein series functors. The latter compatibility is particularly important, as it fails in the original “naive” form of the conjecture.


Cohomological support Geometric Langlands program Derived algebraic geometry Arthur parameters 

Mathematics Subject Classification

14F05 14H60 



The idea of this work emerged as a result of discussions with V. Drinfeld. The very existence of this paper expresses our debt to him. We are grateful to J. Lurie for teaching us the foundations of derived algebraic geometry. We are grateful to N. Rozenblyum for clarifying various aspects of the theory of \({\mathbb {E}}_2\)-algebras. We would like to thank A. Beilinson, H. Krause, V. Lafforgue, A. Neeman, T. Pantev, G. Stevenson for helpful communications and discussions. Special thanks are due to S. Raskin, whose extensive comments on successive drafts of the paper led to substantial improvements. We are very grateful to the anonymous referees for their numerous comments and suggestions. The work of D.A. is partially supported by NSF Grants DMS-1101558 and DMS-0635607. The work of D.G. is partially supported by NSF Grant DMS-1063470.


  1. 1.
    Avni, N.: Why Bun(G) is an algebraic stack.
  2. 2.
    Bezrukavnikov, R., Finkelberg, M.: Equivariant Satake category and Kostant-Whittaker reduction. Mosc. Math. J., 8(1), 39–72, 183 (2008)Google Scholar
  3. 3.
    Ben-Zvi, D., Francis, J., Nadler, D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. 41(4), 573–619 (2008)MathSciNetGoogle Scholar
  5. 5.
    Beilinson, A., Vologodsky, V.: A DG guide to Voevodsky’s motives. Geom. Funct. Anal. 17(6), 1709–1787 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Drinfeld, V., Gaitsgory, D.: On some finiteness questions for algebraic stacks. GAFA 23, 149–294 (2013)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Drinfeld, V., Gaitsgory, D.: Compact generation of the category of D-modules on the stack of G-bundles on a curve. Preprint arXiv:1112.2402
  8. 8.
    Drinfeld, V., Gaitsgory, D.: Geometric constant term functor(s). Preprint arXiv:1311.2071
  9. 9.
    Francis, J., Gaitsgory, D.: Chiral Koszul duality. Sel. Math. (New Series) 18(1), 2–87 (2012)MathSciNetGoogle Scholar
  10. 10.
    Gaitsgory, D.: Sheaves of categories and the notion of 1-affineness. Preprint arXiv:1306.4304
  11. 11.
    Gaitsgory, D.: Ind-coherent sheaves. Mosc. Math. J. 13, 399–528 (2013)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gaitsgory, D., Rozenblyum, N.: DG indschemes. Contemp. Math. 610, 139–251 (2014)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gaitsgory, D., Rozenblyum, N.: Crystals and D-modules. Preprint arXiv:1111.2087
  14. 14.
    Gaitsgory, D., Rozenblyum, N.: Notes on Geometric Langlands: studies in derived algebraic geometry. Book in preparation.
  15. 15.
    Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109(3), 511–519 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand. 34, 167–183 (1974)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128–1162 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lafforgue, V.: Quelques calculs reliés à la correspondance de Langlands géométrique pour \({\mathbb{P}}^1\) (version provisoire).
  19. 19.
    Laumon, G.: Transformation de Fourier généralisée. Preprint alg-geom/9603004Google Scholar
  20. 20.
    Laumon, G.: Transformation de Fourier géométrique. Preprint IHES/85/M/52 (1985)Google Scholar
  21. 21.
    Lurie, J.: Higher topos theory, Volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2009)Google Scholar
  22. 22.
    Lurie, J.: Higher algebra.
  23. 23.
    Lurie, J.: DAG-XIV: Representability theorems.
  24. 24.
    Lurie, J.: DAG-XVIII: Quasi-coherent sheaves and Tannaka duality theorems.
  25. 25.
    Lurie, J.: Tannaka duality for geometric stacks.
  26. 26.
    Mirković, I., Riche, S.: Linear Koszul duality. Compos. Math. 146(1), 233–258 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166(1), 95–143 (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Notes on Geometric Langlands: Generalities on DG categories.
  30. 30.
    Notes on Geometric Langlands: Stacks.
  31. 31.
    Notes on Geometric Langlands: Quasi-coherent sheaves on stacks.
  32. 32.
    Orlov, D.O.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Tr. Mat. Inst. Steklova, 246(Algebr. Geom. Metody, Svyazi i Prilozh.), pp. 240–262 (2004)Google Scholar
  33. 33.
    Orlov, D.O.: Triangulated categories of singularities, and equivalences between Landau-Ginzburg models. Math. Sb. 197(12), 117–132 (2006)CrossRefGoogle Scholar
  34. 34.
    Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Am. Math. Soc. 212(996), vi+133 (2011)MathSciNetGoogle Scholar
  35. 35.
    Rothstein, M.: Sheaves with connection on abelian varieties. Duke Math. J. 84(3), 565–598 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rothstein, M.: Correction to: “Sheaves with connection on abelian varieties”. Duke Math. J. 87(1), 205–211 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Stevenson, G.: Subcategories of singularity categories via tensor actions. Preprint arXiv:1105.4698
  38. 38.
    Thomason, R.W., Trobaugh, T.: Higher algebraic \(K\)-theory of schemes and of derived categories. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pp. 247–435. Birkhäuser Boston, Boston, MA (1990)Google Scholar
  39. 39.
    Umut Isik, M.: Equivalence of the derived category of a variety with a singularity category. Preprint arXiv:1011.1484

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CambridgeUSA

Personalised recommendations