Advertisement

Selecta Mathematica

, Volume 21, Issue 1, pp 245–291 | Cite as

Cycle classes on the moduli of K3 surfaces in positive characteristic

  • Torsten Ekedahl
  • Gerard van der GeerEmail author
Article

Abstract

This paper provides explicit closed formulas in terms of tautological classes for the cycle classes of the height and Artin invariant strata in families of K3 surfaces. The proof is uniform for all strata and uses a flag space as the computations in Ekedahl and van der Geer (Algebra, arithmetic and geometry, progress in mathematics, vol. 269–270, Birkhäuser, Basel, 2010) for the Ekedahl–Oort strata for families of abelian varieties, but employs a Pieri formula to determine the push down to the base space.

Keywords

K3 surface Height Artin invariant 

Mathematics Subject Classification (1991)

14C17 14J28 14H10 

References

  1. 1.
    Artin, M., Swinnerton-Dyer, H.P.F.: The Shafarevich–Tate conjecture for pencils of elliptic curves on \(K3\) surfaces. Invent. Math. 20, 249–266 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Artin, M.: Supersingular \(K3\) surfaces. Ann. Sci. École Norm. Sup. 7(1974), 543–567 (1975)MathSciNetGoogle Scholar
  3. 3.
    Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182. Birkhäuser, Boston, MA (2000)CrossRefGoogle Scholar
  4. 4.
    Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Math. 231. Springer, Berlin (2005)Google Scholar
  5. 5.
    Berthelot, P., Ogus, A.: Notes on crystalline cohomology. Mathematical Notes, Princeton University Press (1978)Google Scholar
  6. 6.
    Boubaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Actualités Scientifiques et Industrielles, No. 1337 Hermann, Paris (1968)Google Scholar
  7. 7.
    Charles, F.: The tate conjecture for K3 surfaces over finite fields. Invent. math. 194, 119–145 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces I. Progr. in Math., vol. 76, Birkhäuser, Boston (1989)Google Scholar
  9. 9.
    Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle. Prepared for publication by Luc Illusie. In: Algebraic Surfaces. Lecture Notes in Math. 868. Springer, Berlin (1981)Google Scholar
  10. 10.
    Ekedahl, T., van der Geer, G.: Cycle classes of the E–O stratification on the moduli of Abelian varieties. In: Algebra, Arithmetic and Geometry, Progress in Mathematics, vol. 269–270. Birkhäuser, Basel (2010)Google Scholar
  11. 11.
    Ekedahl, T., Hyland, J.M.E., Shepherd-Barron, N.I.: Moduli and periods of simply-connected Enriques surfaces. arXiv:1210.0342
  12. 12.
    Fulton, W., Pragacz, P.: Schubert varieties and degeneracy loci. SLN, vol. 1689. Springer, Berlin (1998)Google Scholar
  13. 13.
    Illusie, L.: Topics in algebraic geometry (2004). http://staff.ustc.edu.cn/yiouyang/Illusie
  14. 14.
    Illusie, L.: Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. Éc. Norm. Sup. 12, 501–661 (1979)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “div”. Math. Scand. 39(1), 19–55 (1976)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Kondo, S., Shimada, I.: On certain duality of Néron–Severi lattices of supersingular K3 surfaces and its application to generic supersingular K3 surfaces. Eprint : arXiv:1212.0269.
  17. 17.
    Liedtke, C.: Supersingular k3 surfaces are unirational. arXiv:1304.5623
  18. 18.
    Madapusi Pera, K.: Toroidal compactifications of integral models of Shimura varieties of Hodge type. arXiv:1211.1731
  19. 19.
    Madapusi Pera, K.: The Tate conjecture for K3 surfaces in odd characteristic. arXiv:1301.6326
  20. 20.
    Maulik, D.: Supersingular K3 surfaces for large primes. arXiv:1203.2889
  21. 21.
    Moonen, B., Wedhorn, T.: Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. (72), 3855–3903 (2004). Eprint: math.AG/0306339
  22. 22.
    Ogus, A.: Supersingular K3 crystals. Journées de Géométrie Algébrique de Rennes (II), Astérisque, Soc. Math. Fr. 64, 3–86 (1979)Google Scholar
  23. 23.
    Ogus, A.: Hodge cycle and crystalline cohomology. In: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin, New York (1982)Google Scholar
  24. 24.
    Ogus, A.: A crystalline Torelli theorem for supersingular K3 surfaces. In Arithmetic and geometry, Vol. II: Geometry, Progr. in Math., vol. 36. Birkhäuser, Boston, pp. 361–394 (1983)Google Scholar
  25. 25.
    Pittie, H., Ram, A.: A Pieri–Chevalley formula in the \(K\)-theory of a \(G/B\)-bundle. Electron. Res. Announc. Am. Math. Soc. 5, 102–107 (1999). (electronic)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Rudakov, A.N., Shafarevich, I.R.: Supersingular K3 surfaces over fields of characteristic 2. Izv. Akad. Nauk SSSR Ser. Mat. 42, 848–869 (1978)zbMATHMathSciNetGoogle Scholar
  27. 27.
    van der Geer, G.: Cycles on the moduli space of abelian varieties. Moduli of curves and abelian varieties, 6589, Aspects Math., E33, Vieweg, Braunschweig (1999)Google Scholar
  28. 28.
    van der Geer, G., Katsura, T.: On a stratification of the moduli of \(K3\) surfaces. J. Eur. Math. Soc. (JEMS) 2(3), 259–290 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    van der Geer, G., Katsura, T.: Formal Brauer groups and moduli of abelian surfaces. In: Moduli of abelian varieties (Texel Island, 1999), Progr. in Math., vol. 195, Birkhäuser, Basel, pp. 185–202 (2001)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsStockholm UniversityStockholmSweden
  2. 2.Korteweg-de Vries InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations