Selecta Mathematica

, Volume 20, Issue 4, pp 1159–1195 | Cite as

Commuting differential operators and higher-dimensional algebraic varieties

  • Herbert Kurke
  • Denis Osipov
  • Alexander ZheglovEmail author


Several algebro-geometric properties of commutative rings of partial differential operators (PDOs) as well as several geometric constructions are investigated. In particular, we show how to associate a geometric data by a commutative ring of PDOs, and we investigate the properties of these geometric data. This construction is in some sense similar to the construction of a formal module of Baker–Akhieser functions. On the other hand, there is a recent generalization of Sato’s theory, which belongs to the third author of this paper. We compare both approaches to the commutative rings of PDOs in two variables. As a by-product, we get several necessary conditions on geometric data describing commutative rings of PDOs.


Commuting partial differential operators Algebraic integrable systems Sato theory Algebraic KP theory Algebraic surfaces Two-dimensional local fields 

Mathematics Subject Classification (2010)

Primary 37K10 14J60 Secondary 35S99 



Part of this research was done at the Mathematisches Forschungsinstitut Oberwolfach during a stay within the Research in Pairs Programme from January 23 till February 5, 2011. We would like to thank the MFO at Oberwolfach for the excellent working conditions. We are also grateful to Igor Burban and Andrey E. Mironov for many stimulating discussions and useful references. We are grateful to the referee for carefully reading the article and suggestions that made a lot of improvements for the exposition of our results. The second author was partially supported by Russian Foundation for Basic Research (Grant Nos. 14-01-00178-a and 12-01-33024 mol_a_ved) and by the Programme for the Support of Leading Scientific Schools of the Russian Federation (Grant No. NSh-2998.2014.1). The third author was partially supported by the RFBR Grant Nos. 14-01-00178-a, 13-01-00664 and by Grant NSh No. 581.2014.1.


  1. 1.
    Atiyah, M., Macdonald, I.: Introduction to Commutative Algebra. Addison-Wesley, Reading, MA (1969)zbMATHGoogle Scholar
  2. 2.
    Baker, H.F.: Note on the foregoing paper “commutative ordinary differential operators”. Proc. R. Soc. Lond. 118, 584–593 (1928)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berest, Yu., Etingof, P., Ginzburg, V.: Cherednik algebras and differential operators on quasi-invariants. Duke Math. J. 118(2), 279–337 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Braverman, A., Etingof, P., Gaitsgory, D.: Quantum integrable systems and differential Galois theory. Transform. Groups 2, 31–57 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Berest, Yu., Kasman, A.: D-modules and Darboux transformations. Lett. Math. Phys. 43(3), 279–294 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bourbaki, N.: Algebre Commutative, Elements de Math. 27,28,30,31, Hermann, Paris (1961–1965)Google Scholar
  7. 7.
    Burban, I., Drozd, Y.: Maximal Cohen-Macaulay Modules Over Surface Singularities, Trends in Representation Theory of Algebras and Related Topics, pp. 101–166, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2008)Google Scholar
  8. 8.
    Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. Lond. Math. Soc. Ser. 2(21), 420–440 (1923)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. R. Soc. Lond. Ser. A 118, 557–583 (1928)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chalykh, O.: Algebro-geometric Schrödinger operators in many dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 947–971 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Chalykh, O., Veselov, A.: Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 125, 597–611 (1990)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chalykh, O., Veselov, A.: Integrability in the theory of the Schrödinger operators and harmonic analysis. Commun. Math. Phys. 152, 29–40 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Chalykh, O., Styrkas, K., Veselov, A.: Algebraic integrability for the Schrödinger operators and reflections groups. Theor. Math. Phys. 94, 253–275 (1993)MathSciNetGoogle Scholar
  14. 14.
    Dubrovin, B.: Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable systems I. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems IV, pp. 173–280. Springer, Berlin (1990)CrossRefGoogle Scholar
  16. 16.
    Etingof, P., Ginzburg, V.: On m-quasi-invariants of a Coxeter group. Mosc. Math. J. 2(3), 555–566 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Grothendieck, A., Dieudonné, J.A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. (8), 222 (1961)Google Scholar
  18. 18.
    Faltings, G.: Über Macaulayfizierung. Math. Ann. 238, 175–192 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Feigin, M., Veselov, A.P.: Quasi-invariants of Coxeter groups and m-harmonic polynomials. IMRN 2002(10), 2487–2511 (2002)Google Scholar
  20. 20.
    Feigin, M., Veselov, A.P.: Quasi-invariants and quantum integrals of deformed Calogero-Moser systems. IMRN 2003(46), 2487–2511 (2003)Google Scholar
  21. 21.
    Ferrand, D.: Conducteur, descente et pincement. Bull. Soc. Math. Fr. 131(4), 553–585 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fulton, W.: Intersection Theory. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  24. 24.
    Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv. 32, 183–208 (1977)CrossRefzbMATHGoogle Scholar
  25. 25.
    Krichever, I.M.: Commutative rings of ordinary linear differential operators. Funct. Anal. Appl. 12(3), 175–185 (1978)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Kurke, H., Osipov, D., Zheglov, A.: Formal punctured ribbons and two-dimensional local fields. Journal für die reine und angewandte Mathematik (Crelles J.) 629, 133–170 (2009)Google Scholar
  27. 27.
    Kurke, H., Osipov, D., Zheglov, A.: Formal groups arising from formal punctured ribbons. Int. J. Math. 06, 755–797 (2010)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Lazarsfeld, R.: Positivity in Algebraic Geometry I, Ergebnisse der Mathematik, vol. 48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Manin, Y.: Algebraic aspects of nonlinear differential equations. Itogi Nauki Tekh. Ser. Sovrem. Probl. Math. 11, 5–152 (1978)Google Scholar
  30. 30.
    Matsumura, H.: Commutative Algebra. W.A. Benjamin Co., New York (1970)zbMATHGoogle Scholar
  31. 31.
    Mulase, M.: Algebraic theory of the KP equations. In: Penner, R., Yau, S. (eds.) Perspectives in Mathematical Physics, pp. 151–218 (1994)Google Scholar
  32. 32.
    Mumford, D.: Tata Lectures on Theta II. Birkhäuser, Boston (1984)zbMATHGoogle Scholar
  33. 33.
    Mironov, A.E.: Commutative rings of differential operators corresponding to multidimensional algebraic varieties. Sib. Math. J. 43, 888–898 (2002)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Nakayashiki, A.: Commuting partial differential operators and vector bundles over Abelian varieties. Am. J. Math. 116, 65–100 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Osipov, D.V.: The Krichever correspondence for algebraic varieties (Russian), Izv. Ross. Akad. Nauk Ser. Mat. 65(5), 91–128 (2001). English translation in Izv. Math. 65(5), 941–975 (2001)Google Scholar
  36. 36.
    Parshin, A.N.: On a ring of formal pseudo-differential operators. (Russian) Tr. Mat. Inst. Steklova 224 (1999), Algebra. Topol. Differ. Uravn. i ikh Prilozh., 291–305; translation in, Proc. Steklov Inst. Math. 1999, no. 1 (224), 266–280Google Scholar
  37. 37.
    Parshin, A.N.: Integrable systems and local fields. Commun. Algebra 29(9), 4157–4181 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Parshin, A.N.: Krichever correspondence for algebraic surfaces. Funct. Anal. Appl. 35(1), 74–76 (2001)Google Scholar
  39. 39.
    Segal, G., Wilson, G.: Loop Groups and Equations of KdV Type. Publ. Math. IHES 61, 5–65 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Serre, J.-P.: Groupes algébriques et corps de classes. Hermann, Paris (1959)zbMATHGoogle Scholar
  41. 41.
    Zariski, O., Samuel, P.: Commutative Algebra. Springer, Berlin (1975)zbMATHGoogle Scholar
  42. 42.
    Zheglov, A.B.: Two Dimensional KP Systems and Their Solvability, e-print arXiv:math-ph/0503067v2 Google Scholar
  43. 43.
    Zheglov, A.B., Mironov, A.E.: Baker–Akhieser modules, Krichever sheaves and commutative rings of partial differential operators. Fareast Math. J. 12(1) 20–34 (2012) (in Russian)Google Scholar
  44. 44.
    Zheglov, A.B.: On rings of commuting partial differential operators, St-Petersburg Math. J. 5, 86–145 (2013); e-print arXiv:math-ag/1106.0765 Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Herbert Kurke
    • 1
  • Denis Osipov
    • 2
  • Alexander Zheglov
    • 3
    Email author
  1. 1.Department of Mathematics, Faculty of Mathematics and Natural Sciences IIHumboldt University of BerlinBerlinGermany
  2. 2.Algebra and Number Theory DepartmentSteklov Mathematical InstituteMoscowRussia
  3. 3.Department of Differential Geometry and Applications, Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations