Selecta Mathematica

, Volume 20, Issue 4, pp 979–1002 | Cite as

Ribbon graphs and mirror symmetry



Given a ribbon graph \(\Gamma \) with some extra structure, we define, using constructible sheaves, a dg category \(\mathrm {CPM}(\Gamma )\) meant to model the Fukaya category of a Riemann surface in the cell of Teichmüller space described by \(\Gamma .\) When \(\Gamma \) is appropriately decorated and admits a combinatorial “torus fibration with section,” we construct from \(\Gamma \) a one-dimensional algebraic stack \(\widetilde{X}_\Gamma \) with toric components. We prove that our model is equivalent to \(\mathcal {P}\mathrm {erf}(\widetilde{X}_\Gamma )\), the dg category of perfect complexes on \(\widetilde{X}_\Gamma \).


Homological mirror symmetry Ribbon graphs Constructible sheaves 

Mathematics Subject Classification (2010)

32S60 53D37 


  1. 1.
    Abouzaid, M.: A topological model for the Fukaya categories of plumbings. arXiv:0904.1474
  2. 2.
    Abouzaid, M.: Homogeneous coordinate rings and mirror symmetry for toric varieties. Geom. Topol. 10, 1097–1156 (2006)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. arXiv:0712.3177
  4. 4.
    Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75 (2002)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bernstein, I.N., Gel’fand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Uspehi Mat. Nauk 28(2(170)), 19–33 (1973)MathSciNetMATHGoogle Scholar
  6. 6.
    Bondal, A.: Derived categories of toric varieties. In Convex and Algebraic Geometry. Oberwolfach conference reports, EMS Publishing House, vol. 3, pp. 284–286 (2006)Google Scholar
  7. 7.
    Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643691 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: A categorification of Morelli’s theorem. Invent. Math. 186(1), 79–114 (2011)Google Scholar
  9. 9.
    Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: The coherent-constructible correspondence for toric deligne-mumford stacks. arXiv:0911.4711
  10. 10.
    Harer, J.: The virtual cohomological dimension of the mapping class group of an oriented surface. Invent. Math. 84, 157–176 (1986)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschafte, vol. 292. Springer, Berlin (1994)Google Scholar
  12. 12.
    Kontsevich, M.: Symplectic geometry of homological algebra. In: Lecture at Mathematische Arbeitsgrunden 2009; notes at (2009)
  13. 13.
    Lang, J.T.A.: Relative moduli spaces of semi-stable sheaves on families of curves. Herbert Utz Verlag, Wissenschaft (2001)Google Scholar
  14. 14.
    Lurie, J.: Higher Topos Theory. Princeton University Press, Princeton (2009)MATHGoogle Scholar
  15. 15.
    Lurie, J.: Derived algebraic geometry I: Stable \(\infty \)-categories. arXiv:math/0702299
  16. 16.
    Lurie, J.: Derived algebraic geometry III: Commutative algebra. arXiv:math/0703204
  17. 17.
    Nadler, D.: Microlocal Branes are Constructible Sheaves. arXiv:math/0612399
  18. 18.
    Nadler, D.: Fukaya Categories as Categorical Morse homology. arXiv:1109.4848
  19. 19.
    Nadler, D., Tanaka, H.: A Stable Infinity-Category of Lagrangian Cobordisms. arXiv:1109.4835
  20. 20.
    Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Penner, R.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27, 35–53 (1988)MathSciNetMATHGoogle Scholar
  22. 22.
    Seidel, P.: Homological Mirror Symmetry for the Quartic Surface. arXiv:math/0310414
  23. 23.
    Seidel, P.: Cotangent Bundles and Their Relatives. Morse Lectures, Princeton University, 2010. currently available at
  24. 24.
    Seidel, P.: Some speculations on pairs-of-pants decompositions and Fukaya categories. arXiv:math/10040906
  25. 25.
    Sibilla, N.: Mirror symmetry in dimension one and Fourier-Mukai equivalences. arXiv:1209.6023
  26. 26.
    Sullivan, D.: String topology: background and present state, Current developments in mathematics 2005, pp. 41–88. International Press, Boston, MA (2007)Google Scholar
  27. 27.
    Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C R Acad Sci Paris 340, 15–19 (2005)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Tabuada, G.: A new Quillen model for the Morita homotopy theory of dg categories. arXiv:0701205 Google Scholar
  29. 29.
    Toën, B.: Lectures on DG-Categories, available at
  30. 30.
    Treumann, D.: Remarks on the Nonequivariant Coherent-Constructible Correspondence (preprint)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Max Planck Institute for MathematicsBonnGermany
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA
  3. 3.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations