Selecta Mathematica

, Volume 20, Issue 4, pp 979–1002 | Cite as

Ribbon graphs and mirror symmetry

  • Nicolò SibillaEmail author
  • David Treumann
  • Eric Zaslow


Given a ribbon graph \(\Gamma \) with some extra structure, we define, using constructible sheaves, a dg category \(\mathrm {CPM}(\Gamma )\) meant to model the Fukaya category of a Riemann surface in the cell of Teichmüller space described by \(\Gamma .\) When \(\Gamma \) is appropriately decorated and admits a combinatorial “torus fibration with section,” we construct from \(\Gamma \) a one-dimensional algebraic stack \(\widetilde{X}_\Gamma \) with toric components. We prove that our model is equivalent to \(\mathcal {P}\mathrm {erf}(\widetilde{X}_\Gamma )\), the dg category of perfect complexes on \(\widetilde{X}_\Gamma \).


Homological mirror symmetry Ribbon graphs Constructible sheaves 

Mathematics Subject Classification (2010)

32S60 53D37 



We would like to thank Kevin Costello, David Nadler and Dima Tamarkin for discussions around this project. We are greatly indebted to Bohan Fang and Chiu-Chu Melissa Liu for sharing their thoughts, and (for the second- and third-named authors) for our several collaborations with them. The work of E.Z. is supported in part by NSF/DMS-0707064.


  1. 1.
    Abouzaid, M.: A topological model for the Fukaya categories of plumbings. arXiv:0904.1474
  2. 2.
    Abouzaid, M.: Homogeneous coordinate rings and mirror symmetry for toric varieties. Geom. Topol. 10, 1097–1156 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. arXiv:0712.3177
  4. 4.
    Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bernstein, I.N., Gel’fand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Uspehi Mat. Nauk 28(2(170)), 19–33 (1973)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bondal, A.: Derived categories of toric varieties. In Convex and Algebraic Geometry. Oberwolfach conference reports, EMS Publishing House, vol. 3, pp. 284–286 (2006)Google Scholar
  7. 7.
    Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643691 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: A categorification of Morelli’s theorem. Invent. Math. 186(1), 79–114 (2011)Google Scholar
  9. 9.
    Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: The coherent-constructible correspondence for toric deligne-mumford stacks. arXiv:0911.4711
  10. 10.
    Harer, J.: The virtual cohomological dimension of the mapping class group of an oriented surface. Invent. Math. 84, 157–176 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschafte, vol. 292. Springer, Berlin (1994)Google Scholar
  12. 12.
    Kontsevich, M.: Symplectic geometry of homological algebra. In: Lecture at Mathematische Arbeitsgrunden 2009; notes at (2009)
  13. 13.
    Lang, J.T.A.: Relative moduli spaces of semi-stable sheaves on families of curves. Herbert Utz Verlag, Wissenschaft (2001)Google Scholar
  14. 14.
    Lurie, J.: Higher Topos Theory. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  15. 15.
    Lurie, J.: Derived algebraic geometry I: Stable \(\infty \)-categories. arXiv:math/0702299
  16. 16.
    Lurie, J.: Derived algebraic geometry III: Commutative algebra. arXiv:math/0703204
  17. 17.
    Nadler, D.: Microlocal Branes are Constructible Sheaves. arXiv:math/0612399
  18. 18.
    Nadler, D.: Fukaya Categories as Categorical Morse homology. arXiv:1109.4848
  19. 19.
    Nadler, D., Tanaka, H.: A Stable Infinity-Category of Lagrangian Cobordisms. arXiv:1109.4835
  20. 20.
    Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Penner, R.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27, 35–53 (1988)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Seidel, P.: Homological Mirror Symmetry for the Quartic Surface. arXiv:math/0310414
  23. 23.
    Seidel, P.: Cotangent Bundles and Their Relatives. Morse Lectures, Princeton University, 2010. currently available at
  24. 24.
    Seidel, P.: Some speculations on pairs-of-pants decompositions and Fukaya categories. arXiv:math/10040906
  25. 25.
    Sibilla, N.: Mirror symmetry in dimension one and Fourier-Mukai equivalences. arXiv:1209.6023
  26. 26.
    Sullivan, D.: String topology: background and present state, Current developments in mathematics 2005, pp. 41–88. International Press, Boston, MA (2007)Google Scholar
  27. 27.
    Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C R Acad Sci Paris 340, 15–19 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Tabuada, G.: A new Quillen model for the Morita homotopy theory of dg categories. arXiv:0701205 Google Scholar
  29. 29.
    Toën, B.: Lectures on DG-Categories, available at
  30. 30.
    Treumann, D.: Remarks on the Nonequivariant Coherent-Constructible Correspondence (preprint)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Max Planck Institute for MathematicsBonnGermany
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA
  3. 3.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations