Selecta Mathematica

, Volume 20, Issue 3, pp 885–928 | Cite as

Lefschetz type formulas for dg-categories

  • Alexander PolishchukEmail author


We prove an analog of the holomorphic Lefschetz formula for endofunctors of smooth compact dg-categories. We deduce from it a generalization of the Lefschetz formula of Lunts (J Algebra 356:230–256, 2012) that takes the form of a reciprocity law for a pair of commuting endofunctors. As an application, we prove a version of Lefschetz formula proposed by Frenkel and Ngô (Bull Math Sci 1(1):129–199, 2011). Also, we compute explicitly the ingredients of the holomorphic Lefschetz formula for the dg-category of matrix factorizations of an isolated singularity \({\varvec{w}}\). We apply this formula to get some restrictions on the Betti numbers of a \({\mathbb Z}/2\)-equivariant module over \(k[[x_1,\ldots ,x_n]]/({\varvec{w}})\) in the case when \({\varvec{w}}(-x)={\varvec{w}}(x)\).


dg-category dg-functor Hochschild homology Matrix factorization 

Mathematics Subject Classification (1991)

Primary 16E40 Secondary 18E30 14A22 14B05 



I am grateful to Luchezar Avramov and David Eisenbud for helpful discussions.


  1. 1.
    Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic differential operators. Bull. Am. Math. Soc. 72, 245–250 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Avramov, L., Buchweitz, R.-O.: Lower bounds for Betti numbers. Compositio Math. 86, 147–158 (1993)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Avramov, L., Buchweitz, R.-O.: Homological algebra modulo a regular sequence with special attention to codimension two. J. Algebra 230, 24–67 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ballard, M., Favero, D., Katzarkov, L.: A category of kernels for graded matrix factorizations and Hodge theory. arXiv:1105.3177Google Scholar
  5. 5.
    Beauville, A.: Formules de points fixes en cohomologie coherente. In: Séminaire de géomeétrie algébrique. Université de Paris-Sud, Orsay (1970)Google Scholar
  6. 6.
    Buchweitz, R.-O.: Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings. Preprint (1986)Google Scholar
  7. 7.
    Buchweitz, R.-O., van Straten, D.: An index theorem for modules on a hypersurface singularity. Mosc. Math. J. 12, 237–259, 459 (2012)Google Scholar
  8. 8.
    Caldararu, A.: The Mukai pairing. I: The Hochschild structure. arXiv:math/0308079Google Scholar
  9. 9.
    Caldararu, A.: The Mukai pairing. II. The Hochschild–Kostant–Rosenberg isomorphism. Adv. Math. 194(1), 34–66 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Caldararu, A., Willerton, S.: The Mukai paring I: a categorical approach. N. Y. J. Math. 16, 61–98 (2010)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cisinski, D.-C., Tabuada, G.: Lefschetz and Hirzebruch–Riemann–Roch formulas via noncommutative motives. arXiv:1110.2438Google Scholar
  12. 12.
    Dao, H.: Decent intersection and Tor-rigidity for modules over local hypersurfaces. Trans. AMS 365, 2803–2821 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Donovan, P.: The Lefschetz–Riemann–Roch formula. Bull. Soc. Math. France 97, 257–273 (1969)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Dyckerhoff, T.: Compact generators in categories of matrix factorizations. Duke Math. J. 159(2), 223–274 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. AMS 260, 35–64 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Frenkel, E., Ngô, B.C.: Geometrization of trace formulas. Bull. Math. Sci. 1(1), 129–199 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ginzburg, V.: Calabi–Yau algebras. arXiv:math.AG/0612139Google Scholar
  18. 18.
    Grothendieck, A., et al.: Cohomologie \(l\)-adique et Fonctions \(L\) (SGA5). LNM 589, Springer (1977)Google Scholar
  19. 19.
    Keller, B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)zbMATHGoogle Scholar
  20. 20.
    Keller, B.: On differential graded categories. In: International Congress of Mathematicians, vol. II, pp. 151–190. European Mathematical Society, Zürich (2006)Google Scholar
  21. 21.
    Lunts, V.: Lefschetz fixed point theorems for Fourier–Mukai functors and DG algebras. J. Algebra 356, 230–256 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Markarian, N.: Poincaré–Birkhoff–Witt isomorphism, Hochschild homology and Riemann–Roch theorem. MPIM preprint 2001-52Google Scholar
  23. 23.
    Markarian, N.: The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem. J. Lond. Math. Soc. (2) 79, 129–143 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Moore, W.F., Piepmeyer, G., Spiroff, S., Walker, M.E.: Hochster’s theta invariant and Hodge–Riemann bilinear relations. Adv. Math. 226(2), 1692–1714 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Nielsen, H.A.: Diagonalizably linearized coherent sheaves. Bull. Soc. Math. France 102, 85–97 (1974)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau–Ginzburg models. Proc. Steklov Inst. Math. 246(3), 227–248 (2004)Google Scholar
  27. 27.
    Polishchuk, A., Vaintrob, A.: Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorizations. Duke Math. J. 161, 1863–1926 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Polishchuk, A., Vaintrob, A.: Matrix factorizations and cohomological field theories. arXiv:1105.2903Google Scholar
  29. 29.
    Ponto, K., Shulman, M.: Shadows and traces in bicategories. arXiv:0910.1306Google Scholar
  30. 30.
    Ramadoss, A.: The relative Riemann–Roch theorem from Hochschild homology. N. Y. J. Math. 14, 643–717 (2008)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Ramadoss, A.: The Mukai pairing and integral transforms in Hochschild homology, Mosc. Math. J. 10(3), 629–645, 662–663 (2010)Google Scholar
  32. 32.
    Shklyarov, D.: Hirzebruch–Riemann–Roch theorem for DG algebras. Proc. Lond. Math. Soc. 106, 1–32 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Shklyarov, D.: On Serre duality for compact homologically smooth dg algebras. arXiv:0702590Google Scholar
  34. 34.
    Toën, B.: Lectures on DG-categories. In: Topics in Algebraic and Topological K-theory, pp. 243–302, Lecture Notes in Mathematics 2008. Springer, Berlin (2011)Google Scholar
  35. 35.
    Toën, B., Vaquié, M.: Moduli of objects in dg-categories. Ann. Sci. ENS (4) 40(3), 387–444 (2007)zbMATHGoogle Scholar
  36. 36.
    Toledo, D., Tong, Y.L.L.: Duality and intersection theory in complex manifolds. II. The holomorphic Lefschetz formula. Ann. Math. (2) 108(3), 519–538 (1978)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations