Selecta Mathematica

, Volume 20, Issue 3, pp 817–822 | Cite as

Minimal models, GT-action and formality of the little disk operad

  • Dan Petersen


We give a new proof of formality of the operad of little disks. The proof makes use of an operadic version of a simple formality criterion for commutative differential graded algebras due to Sullivan. We see that formality is a direct consequence of the fact that the Grothendieck–Teichmüller group operates on the chain operad of little disks.


Formal operad Grothendieck-Teichmüller group Drinfel’d associator 

Mathematics Subject Classification (2010)

55P48 18D50 14G32 55P62 53D55 


  1. 1.
    Bar-Natan, D.: On associators and the Grothendieck-Teichmuller group. I. Sel. Math. (N.S.) 4(2), 183–212 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Deligne, P.: La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980)Google Scholar
  3. 3.
    Deligne, P.: Poids dans la cohomologie des variétés algébriques. In: Proceedings of the International Congress of Mathematicians (Vancouver, BC, 1974), vol. 1, pp. 79–85. Canad. Math. Congress, Montreal, Que., (1975)Google Scholar
  4. 4.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Drinfel’d, V.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({{\rm Gal}}({\overline{{{\bf Q}}}/{{\bf Q}}})\). Algebra i Analiz 2(4), 149–181 (1990)Google Scholar
  6. 6.
    Fresse, B.: Homotopy of operads and Grothendieck-Teichmüller groups. Book in preparation. (2013)
  7. 7.
    Granåker, J.: Strong homotopy properads. Int. Math. Res. Not. IMRN, (14):Art. ID rnm044, 26, (2007)Google Scholar
  8. 8.
    Ihara, Y.: On the embedding of \({{\rm Gal}}({\overline{{\bf Q}}/{{\bf Q}}})\) into \({\widehat{{\rm GT}}}\). In: The Grothendieck Theory of Dessins d’Enfants (Luminy, 1993), volume 200 of London Math. Soc. Lecture Note Ser., pp. 289–321. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  9. 9.
    Kim, M.: Weights in cohomology groups arising from hyperplane arrangements. Proc. Am. Math. Soc. 120(3), 697–703 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lambrechts, P., Volic, I.: Formality of the little \(N\)-disks operad. Preprint. arXiv:0808.0457 (2008)Google Scholar
  12. 12.
    Markl, M.: Models for operads. Commun. Algebra 24(4), 1471–1500 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Merkulov, S.: Grothendieck-Teichmüller group in algebra, geometry and quantization: a survey. Notes from a seminar at Stockholm University organized by Torsten Ekedahl and Sergei Merkulov. (2011)
  14. 14.
    Morava, J.: The motivic Thom isomorphism. In: Elliptic Cohomology, volume 342 of London Math. Soc. Lecture Note Ser., pp. 265–285. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  15. 15.
    Santos, F.G., Navarro, V., Pascual, P., Roig, A.: Moduli spaces and formal operads. Duke Math. J. 129(2), 291–335 (2005)Google Scholar
  16. 16.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., (47), 269–331 (1978)Google Scholar
  17. 17.
    Tamarkin, D.E.: Formality of chain operad of little discs. Lett. Math. Phys. 66(1–2), 65–72 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations