Selecta Mathematica

, Volume 18, Issue 3, pp 557–590 | Cite as

Seidel elements and mirror transformations

  • Eduardo GonzálezEmail author
  • Hiroshi Iritani


The goal of this article is to give a precise relation between the mirror symmetry transformation of Givental and the Seidel elements for a smooth projective toric variety X with −K X nef. We show that the Seidel elements entirely determine the mirror transformation and mirror coordinates.


Seidel elements Mirror transformations Batyrev relations Fano toric variety Nef toric variety 

Mathematics Subject Classification (2010)

Primary 14N35 53D45 Secondary 14J32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audin, M.: Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics, revised edn. Birkhäuser Verlag, Basel (2004)Google Scholar
  2. 2.
    Batyrev, V.V.: Quantum cohomology rings of toric manifolds. Astérisque (1993) 9–34 Journées de Géométrie Algébrique d’Orsay (Orsay, 1992)Google Scholar
  3. 3.
    Coates T., Corti A., Iritani H., Tseng H.-H.: Computing genus zero twisted Gromov–Witten invariants. Duke Math. J. 147(3), 377–438 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999)Google Scholar
  5. 5.
    Cox D.A., Little J., Schenck H.: Toric Varieties. American Mathematical Society, USA (2010)Google Scholar
  6. 6.
    Frankel T.: Fixed points and torsion on Kähler manifolds. Ann. Math. 70(2), 1–8 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory and mirror symmetry on compact toric manifolds. ArXiv Mathematics e-prints 1009.1648v1Google Scholar
  8. 8.
    Givental, A.B.: Equivariant Gromov–Witten invariants. Int. Math. Res. Notices, pp. 613–663 (1996)Google Scholar
  9. 9.
    Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms And Related Topics (Kyoto, 1996), Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser Boston, Boston, MA (1998)Google Scholar
  10. 10.
    Gonzalez E.: Quantum cohomology and S 1-actions with isolated fixed points. Trans. Am. Math. Soc. 358, 2927–2948 (2006) (electronic)zbMATHCrossRefGoogle Scholar
  11. 11.
    Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian T n-Spaces, Progress in Mathematics, vol. 122. Birkhäuser, Boston (1994)Google Scholar
  12. 12.
    Lalonde F., McDuff D., Polterovich L.: Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135, 369–385 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li J., Tian G.: Comparison of algebraic and symplectic Gromov–Witten invariants. Asian J. Math. 3, 689–728 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    McDuff D.: Quantum homology of fibrations over S 2. Int. J. Math. 11, 665–721 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    McDuff, D.: Symplectomorphism groups and quantum cohomology. In: The Unity Of Mathematics, Progress in Mathematics, vol. 244, pp. 457–471. Birkhäuser Boston, Boston, MA (2006)Google Scholar
  16. 16.
    McDuff, D., Salamon, D.: J-holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, vol. 52. American Mathematical Society, Providence, RI (2004)Google Scholar
  17. 17.
    McDuff, D., Tolman, S.: Topological properties of Hamiltonian circle actions. IMRP Int. Math. Res. Pap., vol. 72826, pp. 1–77 (2006)Google Scholar
  18. 18.
    Przyjalkowski, V.: Hori-Vafa mirror for complete intersections in weighted projective space and weak Landau-Ginzburg model. arXiv:1003.5200Google Scholar
  19. 19.
    Seidel P.: π1 of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal. 7, 1046–1095 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsUMASS BostonBostonUSA
  2. 2.Department of Mathematics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations