Advertisement

Selecta Mathematica

, Volume 18, Issue 3, pp 473–512 | Cite as

Symplectic homology of Lefschetz fibrations and Floer homology of the monodromy map

  • Mark McLeanEmail author
Article

Abstract

We construct a spectral sequence converging to symplectic homology of a Lefschetz fibration whose E 1 page is related to Floer homology of the monodromy symplectomorphism and its iterates. We use this to show the existence of fixed points of certain symplectomorphisms.

Keywords

Symplectic homology Lefschetz fibrations Floer homology Monodromy map 

Mathematics Subject Classification (2000)

Primary 53D40 Secondary 53D35 37J10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbulut, S., Arikan, M. F.: Lefschetz fibrations on compact stein manifolds, pp. 1–19 (2010). arXiv:1003.2200Google Scholar
  2. 2.
    Albers P., McLean M.: Non-displaceable contact embeddings and infinitely many leaf-wise intersections. J. Symplectic Geom. 9, 271–284 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abouzaid M., Seidel P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bourgeois F., Eliashberg Y., Hofer H., Wysocki K., Zehnder E.: Compactness results in symplectic field theory. Geom. Topol 7, 799–888 (2003) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bourgeois, F.: Introduction to contact homology. Summer School in Berder: holomorphic curves and contact topology (2003)Google Scholar
  6. 6.
    Cotton-Clay A.: Symplectic Floer homology of area-preserving surface diffeomorphisms. Geom. Topol. 13(5), 2619–2674 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cieliebak K., Floer A., Hofer H.: Symplectic homology. II. A general construction. Math. Z. 218(1), 103–122 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cieliebak K., Floer A., Hofer H., Wysocki K.: Applications of symplectic homology. II. Stability of the action spectrum. Math. Z. 223(1), 27–45 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cieliebak K.: Handle attaching in symplectic homology and the chord conjecture. J. Eur. Math. Soc. (JEMS) 4(2), 115–142 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dostoglou S., Salamon D.A.: Self-dual instantons and holomorphic curves. Ann. Math. (2) 139(3), 581–640 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Eliashberg, Y.: Symplectic geometry of plurisubharmonic functions. In: Gauge theory and symplectic geometry (Montreal, PQ, 1995), vol. 488 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 49–67. Kluwer, Dordrecht (1997) (With notes by Miguel Abreu)Google Scholar
  12. 12.
    Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002), pp. 405–414, Higher Ed. Press, Beijing (2002)Google Scholar
  13. 13.
    Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  14. 14.
    Hofer, H., Salamon, D.A.: Floer homology and Novikov rings. In The Floer memorial volume, vol. 133 of Progr. Math., pp. 483–524. Birkhäuser, Basel (1995)Google Scholar
  15. 15.
    McLean, M.: Computability and the growth rate of symplectic homology. arXiv:1109.4466Google Scholar
  16. 16.
    McLean M.: Lefschetz fibrations and symplectic homology. Geom. Topol. 13(4), 1877–1944 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Oancea A.: The Künneth formula in Floer homology for manifolds with restricted contact type boundary. Math. Ann 334, 65–89 (2006) (arXiv:SG/0403376)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Robbin J., Salamon D.: The Maslov index for paths. Topology 32(4), 827–844 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Seidel P.: A long exact sequence for symplectic Floer cohomology. Topology 42(5), 1003–1063 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Seidel, P.: A biased view of symplectic cohomology. In: Current Developments in Mathematics, 2006, pp. 211–253. Int. Press, Somerville, MA (2008)Google Scholar
  21. 21.
    Salamon D., Zehnder E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math. 45(10), 1303–1360 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Viterbo C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9(5), 985–1033 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Weinstein A.: Contact surgery and symplectic handlebodies. Hokkaido Math. J. 20(2), 241–251 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.CambridgeUSA

Personalised recommendations