Advertisement

Selecta Mathematica

, Volume 16, Issue 4, pp 731–789 | Cite as

q-Distributions on boxed plane partitions

  • Alexei BorodinEmail author
  • Vadim Gorin
  • Eric M. Rains
Article

Abstract

We introduce elliptic weights of boxed plane partitions and prove that they give rise to a generalization of MacMahon’s product formula for the number of plane partitions in a box. We then focus on the most general positive degenerations of these weights that are related to orthogonal polynomials; they form three 2-D families. For distributions from these families, we prove two types of results. First, we construct explicit Markov chains that preserve these distributions. In particular, this leads to a relatively simple exact sampling algorithm. Second, we consider a limit when all dimensions of the box grow and plane partitions become large and prove that the local correlations converge to those of ergodic translation invariant Gibbs measures. For fixed proportions of the box, the slopes of the limiting Gibbs measures (that can also be viewed as slopes of tangent planes to the hypothetical limit shape) are encoded by a single quadratic polynomial.

Keywords

Plane partitions q-Racah orthogonal polynomials Determinantal point processes 

Mathematics Subject Classification (2010)

Primary 82C41 Secondary 33D45 52C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonichon N., Mosbah M.: Watermelon uniform generation with applications. Theor. Comput. Sci. 307, 241–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borodin, A., Gorin, V.: Shuffling algorithm for boxed plane partitions. Adv. Math. 220(6), 1739–1770 (1 April 2009). arXiv:0804.3071Google Scholar
  3. 3.
    Borodin, A., Ferrari, P.: Anisotropic growth of random surfaces in 2 + 1 dimensions. arXiv:0804.3035Google Scholar
  4. 4.
    Borodin A, Olshanski G.: Markov processes on partitions. Probability Theory Relat. Fields 135(1), 84–152 (2006) arXiv: math-ph/0409075zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borodin A., Olshanski G.: Asymptotics of Plancherel-type random partitions. J. Algebra 313(1), 40–60 (2007) arXiv: math.PR/0610240zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin A., Okounkov A., Olshanski G.: Asymptotics of Plancherel measure for symmetric groups. J. Am. Math. Soc. 13(3), 481–515 (2000). arXiv: math.CO/9905032zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Borodin A., Shlosman S.: Gibbs ensembles of nonintersecting paths. Comm. Math. Phys. 293(1), 145–170 (2010) arXiv: 0804.0564zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cohn H., Kenyon R., Propp J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2001) arXiv:math/0008220zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cohn H., Larsen M., Propp J.: The shape of a typical boxed plane partition. N Y J. Math. 4, 137–165 (1998) arXiv:math/9801059zbMATHMathSciNetGoogle Scholar
  10. 10.
    Destainville N.: Entropy and boundary conditions in random rhombus tilings. J. Phys. A Math. Gen. 31, 6123–6139 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Destainville N., Mosseri R., Bailly F.: Configurational entropy of codimension-one tilings and directed membranes. J. Stat. Phys. 87(3/4), 697–754 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Diaconis P., Fill J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eynard B., Mehta M.L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A Math. Gen. 31, 4449–4456 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. In: The Arnold–Gelfand mathematical seminars, pp 171–204. Birkhäuser Boston, Boston, MA (1997)Google Scholar
  15. 15.
    Gorin V.: Non-intersecting paths and Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42(3), 180–197 (2008) arXiv: 0708.2349zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
  17. 17.
    Johansson K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123(2), 225–280 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Johansson K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier (Grenoble) 55(6), 2129–2145 (2005) arXiv:math.PR/0409013zbMATHMathSciNetGoogle Scholar
  19. 19.
    Johansson, K., Nordenstam, E.: Eigenvalues of GUE Minors. Electron. J. Probab. 11, paper 50, 1342–1371 (2006). arXiv:math/0606760Google Scholar
  20. 20.
    Kasteleyn P.: Graph theory and crystal physics, graph theory and theretical physics, pp. 43–110. Academic Press, London (1967)Google Scholar
  21. 21.
    Kenyon R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré, Probab. 33, 91–618 (1997)MathSciNetGoogle Scholar
  22. 22.
  23. 23.
    Kenyon R., Okounkov A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007) arXiv:math-ph/0507007zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kenyon R., Okounkov A., Sheffield S.: Dimers and Amoebae. Ann. Math. 163(3), 1019–1056 (2006) arXiv:math-ph/0311005zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Koekoek, R., Swarttouw, R.F.: The Askey–scheme of hypergeometric orthogonal polynomials and its q-analogue, http://aw.twi.tudelft.nl/~koekoek/reports.html
  26. 26.
    Krattenthaler C.: Another involution principle-free bijective proof of Stanley’s hook-content formula. J. Comb. Theory Ser. A 88, 66–92 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Luby M., Randall D., Sinclair A.J.: Markov chain algorithms for planar lattice structures. SIAM J. Comput. 31, 167–192 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Macdonald I.: Symmetric functions and Hall Polinomaial. Clarendon Press, Oxford (1979)Google Scholar
  29. 29.
    Olshanski G.: Difference operators and determinantal point processes. Funct. Anal. Appl. 42(4), 317–329 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Okounkov A., Reshetikhin N.: Correlation functions of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003) arXiv: math.CO/0107056zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Propp J.: Genrating random elements of finite distributive lattices. Electron. J. Combin. 4(2), #R15 (1997)MathSciNetGoogle Scholar
  32. 32.
    Propp J.: Generalized domino-shuffling. Tilings Plane Theor. Comput. Sci. 303(2–3), 267–301 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Reed M., Simon B.: Methods of modern mathematical physics, vol. I. Functional Analysis. Academic Press, New York (1972)Google Scholar
  34. 34.
    Schlosser M.: Elliptic enumeration of nonintersecting lattice paths. J. Combin. Theory Ser. A 114(3), 505–521 (2007) arXiv: ath/0602260zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sheffield, S.: Random surfaces. Astérisque 2006, no. 304Google Scholar
  36. 36.
    Spiridonov V.P., Zhedanov A.S.: Spectral transformation chains and some new biorthogonal rational functions. Comm. Math. Phys. 210, 49–83 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Stanley R.P.: Enumerative combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  38. 38.
    Warnaar S.O.: Summation and transformation formulas for elliptic hypergeometric series. Constr. Approx. 18(4), 479–502 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Wilson, D.B.: Determinant algorithms for random planar structures. Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), 258–267. ACM, New York (1997)Google Scholar
  40. 40.
    Wilson D.B.: Mixing times of Lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab. 14(1), 274–325 (2004) arXiv:math.PR/0102193zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Dobrushin Mathematics LaboratoryInstitute for Information Transmission ProblemsMoscowRussian Federation
  3. 3.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussian Federation
  4. 4.Independent University of MoscowMoscowRussian Federation

Personalised recommendations