Selecta Mathematica

, 15:487 | Cite as

Seidel–Smith cohomology for tangles

  • Reza RezazadeganEmail author


We generalize the “symplectic Khovanov cohomology” of Seidel and Smith (Duke Math J 134(3):453–514, 2006) to tangles using the notion of symplectic valued topological field theory introduced by Wehrheim and Woodward (arXiv:0905.1368).

Mathematics Subject Classification (2000)

53D40 57M27 


  1. 1.
    Cautis S., Kamnitzer J.: Knot homology via derived categories of coherent sheaves. I. The \({{\mathfrak{sl}}(2)}\) -case. Duke Math. J. 142(3), 511–588 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cerf J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math. 39, 5–173 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eliashberg Y., Hofer H., Salamon D.: Lagrangian intersections in contact geometry. Geom. Funct. Anal. 5(2), 244–269 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection homology-anomaly and obstruction (preprint)Google Scholar
  5. 5.
    Hirsch M.W., Pugh C.C.: Stable manifolds for hyperbolic sets. Bull. Am. Math. Soc. 75, 149–152 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978). Second printing, revisedGoogle Scholar
  7. 7.
    Jacobson N.: Completely reducible Lie algebras of linear transformations. Proc. Am. Math. Soc. 2, 105–113 (1951)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kamnitzer, J.: The Beilinson-Drinfeld Grassmannian and symplectic knot homology. arXiv:0811.1730Google Scholar
  9. 9.
    Khovanov M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Khovanov M.: A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665–741 (2002) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Khovanov M., Seidel P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Manolescu C.: Nilpotent slices, Hilbert schemes, and the Jones polynomial. Duke Math. J. 132(2), 311–369 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ma’u, S., Wehrheim, K., Woodward, C.: A functors for Lagrangian correpondences (to appear)Google Scholar
  14. 14.
    Oh Y.-G.: Floer homology and its continuity for non-compact Lagrangian submanifolds. Turkish J. Math. 25(1), 103–124 (2001)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Perutz T.: Lagrangian matching invariants for fibred four-manifolds. I. Geom. Topol. 11, 759–828 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Seidel P.: Graded Lagrangian submanifolds. Bull. Soc. Math. France 128(1), 103–149 (2000)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Seidel P., Smith I.: A link invariant from the symplectic geometry of nilpotent slices. Duke Math. J. 134(3), 453–514 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Slodowy P.: Simple singularities and simple algebraic groups. Lecture Notes in Mathematics, vol. 815. Springer, Berlin (1980)Google Scholar
  19. 19.
    Wehrheim, K., Woodward, C.T.: Floer cohomology and geometric composition of Lagrangian correspondences. arXiv:0905.1368Google Scholar
  20. 20.
    Weinstein, A.: The symplectic “category”. In Differential geometric methods in mathematical physics (Clausthal, 1980). Lecture Notes in Math., vol. 905, pp. 45–51. Springer, Berlin (1982)Google Scholar
  21. 21.
    Yetter, D.N.: Markov algebras. In Braids (Santa Cruz, CA, 1986). Contemp. Math., vol. 78, pp. 705–730. American Mathematical Society, Providence (1988)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations