# Hölder kernel estimates for Robin operators and Dirichlet-to-Neumann operators

• A. F. M. ter Elst
• M. F. Wong
Article

## Abstract

Consider the elliptic operator
\begin{aligned} A = - \sum _{k,l=1}^d \partial _k \, c_{kl} \, \partial _l + \sum _{k=1}^d a_k \, \partial _k - \sum _{k=1}^d \partial _k \, b_k + a_0 \end{aligned}
on a bounded connected open set $$\Omega \subset \mathbb {R}^d$$ with Lipschitz boundary conditions, where $$c_{kl} \in L_\infty (\Omega ,\mathbb {R})$$ and $$a_k,b_k,a_0 \in L_\infty (\Omega ,\mathbb {C})$$, subject to Robin boundary conditions $$\partial _\nu u + \beta \, {\mathop {\mathrm{Tr \,}}}u = 0$$, where $$\beta \in L_\infty (\partial \Omega , \mathbb {C})$$ is complex valued. Then we show that the kernel of the semigroup generated by $$-A$$ satisfies Gaussian estimates and Hölder Gaussian estimates. If all coefficients and the function $$\beta$$ are real valued, then we prove Gaussian lower bounds. Finally, if $$\Omega$$ is of class $$C^{1+\kappa }$$ with $$\kappa > 0$$, $$c_{kl} = c_{lk}$$ is Hölder continuous, $$a_k = b_k = 0$$ and $$a_0$$ is real valued, then we show that the kernel of the semigroup associated to the Dirichlet-to-Neumann operator corresponding to A has Hölder Poisson bounds.

## Keywords

Robin boundary conditions Dirichlet-to-Neumann operator Heat kernel estimates

## Mathematics Subject Classification

35K05 35B45 35J25

## Notes

### Acknowledgements

The authors wish to thank Wolfgang Arendt for many discussions at various stages of this project. The authors wish to thank Mourad Choulli for helpful comments regarding the chain condition. Moreover, the authors wish to thank the referees for their comments. The first-named author is most grateful for the hospitality extended to him during a fruitful stay at the University of Ulm. He wishes to thank the University of Ulm for financial support. Part of this work is supported by an NZ-EU IRSES counterpart fund and the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. Part of this work is supported by the EU Marie Curie IRSES Program, Project ‘AOS’, No. 318910.

## References

1. 1.
Arendt, W. and Elst, A.F.M. ter, Gaussian estimates for second order elliptic operators with boundary conditions. J. Oper. Theory 38 (1997), 87–130.
2. 2.
Arendt, W. and Elst, A.F.M. ter, Sectorial forms and degenerate differential operators. J. Oper. Theory 67 (2012), 33–72.
3. 3.
Arendt, W. and Elst, A.F.M. ter, The Dirichlet problem without the maximum principle. Annales de l’Institut Fourier 69 (2019), 763–782.
4. 4.
Arendt, W., Elst, A.F.M. ter, Kennedy, J. B. and Sauter, M., The Dirichlet-to-Neumann operator via hidden compactness. J. Funct. Anal. 266 (2014), 1757–1786.
5. 5.
Aronson, D. G., Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73 (1967), 890–896.
6. 6.
Auscher, P., Regularity theorems and heat kernels for elliptic operators. J. Lond. Math. Soc. 54 (1996), 284–296.
7. 7.
Auscher, P. and Tchamitchian, P., Gaussian estimates for second order elliptic divergence operators on Lipschitz and $C^1$ domains. In Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), vol. 215 of Lecture Notes in Pure and Appl. Math., 15–32. Marcel Dekker, New York, 2001.
8. 8.
Behrndt, J. and Elst, A. F. M. ter, Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps. J. Spectr. Theory  (2019). In press.Google Scholar
9. 9.
Choi, J. and Kim, S., Green’s functions for elliptic and parabolic systems with Robin-type boundary conditions. J. Funct. Anal. 267 (2014), 3205–3261.
10. 10.
Choulli, M. and Kayser, L., Gaussian lower bound for the Neumann Green function of a general parabolic operator. Positivity 19 (2015), 625–646.
11. 11.
Daners, D., Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217 (2000), 13–41.
12. 12.
Daners, D., Inverse positivity for general Robin problems on Lipschitz domains. Arch. Math. 92 (2009), 57–69.
13. 13.
Davies, E. B., Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92. Cambridge University Press, Cambridge etc., 1989.Google Scholar
14. 14.
Elst, A.F.M. ter and Ouhabaz, E.-M., Partial Gaussian bounds for degenerate differential operators II. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2015), 37–81.
15. 15.
Elst, A.F.M. ter and Ouhabaz, E.-M., Poisson bounds for the Dirichlet-to-Neumann operator on a $C^{1+\kappa }$-domain. J. Differ. Equ. 267 (2019), 4224–4273.
16. 16.
Elst, A.F.M. ter and Rehberg, J., Hölder estimates for second-order operators on domains with rough boundary. Adv. Differ. Equ. 20 (2015), 299–360.
17. 17.
Elst, A.F.M. ter and Robinson, D.W., Local lower bounds on heat kernels. Positivity 2 (1998), 123–151.
18. 18.
Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions. Studies in advanced mathematics. CRC Press, Boca Raton, 1992.
19. 19.
Gesztesy, F., Mitrea, M. and Nichols, R., Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions. J. Anal. Math. 122 (2014), 229–287.
20. 20.
Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies 105. Princeton University Press, Princeton, 1983.Google Scholar
21. 21.
Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980.Google Scholar
22. 22.
Nittka, R., Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differ. Equ. 251 (2011), 860–880.
23. 23.
Ouhabaz, E.-M., Analysis of heat equations on domains, vol. 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2005.Google Scholar