Advertisement

Discrete growth–decay–fragmentation equation: well-posedness and long-term dynamics

  • J. BanasiakEmail author
  • L. O. Joel
  • S. Shindin
Open Access
Article
  • 48 Downloads

Abstract

In this paper, we consider discrete growth–decay–fragmentation equations that describe the size distribution of clusters that can undergo splitting, growth and decay. The clusters can be for instance animal groups that can split but can also grow, or decrease in size due to birth or death of individuals in the group, or chemical particles where the growth and decay can be due to surface deposition or erosion. We prove that for a large class of such problems, the solution semigroup is analytic and compact and thus has the asynchronous exponential growth property; that is, the long-term behaviour of any solution is given by a scalar exponential function multiplied by a vector, called the stable population distribution, that is independent on the initial conditions.

Keywords

Discrete fragmentation Birth-and-death process \(C_0\)-Semigroups Long-term behaviour Asynchronous exponential growth Spectral gap Numerical simulations 

Mathematics Subject Classification

34G10 35B40 35P05 47D06 45K05 80A30 

Notes

References

  1. 1.
    Azmy S. Ackleh and Ben G. Fitzpatrick. Modeling aggregation and growth processes in an algal population model: analysis and computations. Journal of Mathematical Biology, 35(4):480–502, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wolfgang Arendt and Abdelaziz Rhandi. Perturbation of positive semigroups. Arch. Math. (Basel), 56(2):107–119, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ovide Arino. Some spectral properties for the asymptotic behaviour of semigroups connected to population dynamics. SIAM Review, 34(3):445–476, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    John M. Ball and Jack Carr. The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phys., 61(1-2):203–234, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jacek Banasiak, Luke O. Joel, and S. Shindin. Analysis and simulations of the discrete fragmentation equation with decay. Mathematical Methods in the Applied Sciences, 41(16):6530–6545, 2018.Google Scholar
  6. 6.
    Jacek Banasiak. Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates. Nonlinear Anal. Real World Appl., 13(1):91–105, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete Contin. Dyn. Syst. Ser. B, 17(2):445–472, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jacek Banasiak and Luisa Arlotti. Perturbations of positive semigroups with applications. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.Google Scholar
  9. 9.
    Jacek Banasiak and Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete Contin. Dyn. Syst. Ser. B, 11(3):563–585, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jacek Banasiak and Wilson Lamb. The discrete fragmentation equation: semigroups, compactness and asynchronous exponential growth. Kinet. Relat. Models, 5(2):223–236, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jacek Banasiak, Suares C. Oukouomi Noutchie, and Ryszard Rudnicki. Global solvability of a fragmentation-coagulation equation with growth and restricted coagulation. J. Nonlinear Math. Phys., 16(suppl. 1):13–26, 2009.Google Scholar
  12. 12.
    Jacek Banasiak, Katarzyna Pichór, and Ryszard Rudnicki. Asynchronous exponential growth of a general structured population model. Acta Appl. Math., 119:149–166, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    George I Bell and Ernest C Anderson. Cell growth and division: I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophysical Journal, 7(4):329–351, 1967.CrossRefGoogle Scholar
  14. 14.
    Mao Cai, Boyd F Edwards, and Hongtao Han. Exact and asymptotic scaling solutions for fragmentation with mass loss. Physical Review A, 43(2):656, 1991.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Philippe Clément, Henk J. A. M. Heijmans, Sigurd B. Angenent, Cornelis J. van Duijn, and Ben de Pagter. One-parameter semigroups, volume 5 of CWI Monographs. North-Holland Publishing Co., Amsterdam, 1987.Google Scholar
  16. 16.
    Fernando P. da Costa. Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation. J. Math. Anal. Appl., 192(3):892–914, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pierre Degond, Jian-Guo Liu, and Robert L. Pego. Coagulation–Fragmentation Model for Animal Group-Size Statistics. J. Nonlinear Sci., 27(2):379–424, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Odo Diekmann, Henk JAM Heijmans, and Horst R Thieme. On the stability of the cell size distribution. Journal of Mathematical Biology, 19(2):227–248, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marie Doumic and Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinet. Relat. Models, 9(2):251–297, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Marie Doumic Jauffret and Pierre Gabriel. Eigenelements of a general aggregation-fragmentation model. Math. Models Methods Appl. Sci., 20(5):757–783, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ronald L. Drake. A general mathematical survey of the coagulation equation. In G.M. Hidy and J.R. Brock, editors, Topics in Current Aerosol Research, International Reviews in Aerosol Physics and Chemistry, pages 201 – 376. Pergamon, 1972.Google Scholar
  22. 22.
    Boyd F Edwards, Mao Cai, and Hongtao Han. Rate equation and scaling for fragmentation with mass loss. Physical Review A, 41(10):5755–5757, 1990.CrossRefGoogle Scholar
  23. 23.
    Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.Google Scholar
  24. 24.
    Klaus-Jochen Engel and Rainer Nagel. A short course on operator semigroups. Universitext. Springer, New York, 2006.zbMATHGoogle Scholar
  25. 25.
    W. Gautschi. Some elementary inequalities relating to the gamma and incomplete gamma function. J.Math. and Phys., 38:77–81, 1959.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shay Gueron and Simon A Levin. The dynamics of group formation. Mathematical biosciences, 128(1):243–264, 1995.CrossRefzbMATHGoogle Scholar
  27. 27.
    George A Jackson. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research Part A. Oceanographic Research Papers, 37(8):1197–1211, 1990.CrossRefGoogle Scholar
  28. 28.
    Philippe Laurençot and Benoît Perthame. Exponential decay for the growth-fragmentation/cell-division equation. Commun. Math. Sci., 7(2):503–510, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Z. Aleksander Melzak. The effect of coalescence in certain collision processes. Quart. Appl. Math., XI(2):231–234, 1953.Google Scholar
  30. 30.
    Philippe Michel, Stéphane Mischler, and Benoît Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Stéphane Mischler and J. Scher. Spectral analysis of semigroups and growth-fragmentation equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(3):849–898, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hans Müller. Zur allgemeinen theorie ser raschen koagulation. Fortschrittsberichte über Kolloide und Polymere, 27(6):223–250, 1928.Google Scholar
  33. 33.
    Akira Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advances in biophysics, 22:1–94, 1986.CrossRefGoogle Scholar
  34. 34.
    Akira Okubo and Simon A. Levin. Diffusion and ecological problems: modern perspectives, volume 14 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, second edition, 2001.Google Scholar
  35. 35.
    Amnon Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.Google Scholar
  36. 36.
    Benoît Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.zbMATHGoogle Scholar
  37. 37.
    Benoît Perthame and Lenya Ryzhik. Exponential decay for the fragmentation or cell-division equation. J. Differential Equations, 210(1):155–177, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    James W Sinko and William Streifer. A model for population reproducing by fission. Ecology, 52(2):330–335, 1971.CrossRefGoogle Scholar
  39. 39.
    Louise Smith, Wilson Lamb, Matthias Langer and Adam McBride. Discrete fragmentation with mass loss. J. Evol. Equ., 12(1):181–201, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Marian Smoluchowski. Drei Vortrage über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift fur Physik, 17:557–585, 1916.Google Scholar
  41. 41.
    Marian Smoluchowski. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Zeitschrift fuer physikalische Chemie, 92:129 – 168, 2010.Google Scholar
  42. 42.
    Robert M. Ziff and E.D. McGrady. Kinetics of polymer degradation. Macromolecules, 19(10):2513–2519, 1986.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Institute of MathematicsTechnical University of ŁódźŁódźPoland
  3. 3.School of Mathematics, Statistics and Computer ScienceUniversity of Kwazulu-NatalDurbanSouth Africa

Personalised recommendations