On the \(L^p\)\(L^q\) estimates of the gradient of solutions to the Stokes problem

  • Paolo MaremontiEmail author


This paper is concerned with estimates of the gradient of the solutions to the Stokes IBVP both in a bounded and in an exterior domain. More precisely, we look for estimates of the kind \(||\nabla v(t)||_q \le g(t)||\nabla v_0||_p,\;q\ge p>1,\) for all \(t>0\), where function g is independent of v.


Stokes problem Semigroup properties 

Mathematics Subject Classification

35B45 35Q30 76D07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is grateful to some anonymous referees for the careful reading of the paper. The referee’s comments have made the paper more readable.


  1. 1.
    K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions, Acta Math., 211 (2013) 1–46.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Abe, Y. Giga, The \(L^\infty \) -Stokes semigroup in exterior domains, J. Evol. Equ. 14 (2014) 1–28.Google Scholar
  3. 3.
    K. Abe, Y. Giga, M. Hieber, Stokes resolvent estimates in spaces of bounded functions, Ann. Sci. Ec. Norm. Super., 48 (2015) 537–559.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Bolkart and M. Hieber, Pointwise upper bounds for the solution of the Stokes equation on \(L^{\infty }_\sigma (\Omega )\) and applications, J. of Funct. Analysis, 268 (2015) 1678–1710.Google Scholar
  5. 5.
    W. Borchers and T. Miyakawa, \(L^2\) decay for the Navier–Stokes flow in half spaces, Math.Ann. 282 (1988) 139–155.Google Scholar
  6. 6.
    W. Borchers and T. Miyakawa, Algebraic \(L^2\) decay for Navier–Stokes flows in exterior domains, Acta Math., 165 (1990) 189–227.Google Scholar
  7. 7.
    W. Borchers, H. Sohr, On the semigroup of the Stokes operator for exterior domains in \(L^q\) -spaces, Math. Z. 196 (1987) 415–425.Google Scholar
  8. 8.
    T. Chang and H. Choe, Maximum modulus estimates for the solution of the Stokes equation, J. Differential Equations 254 (2013) 2682–2704.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    F. Crispo and Maremonti, An interpolation inequality in exterior domains, Rend. Sem. Mat. Univ. Padova 112 (2004) 11–39.Google Scholar
  10. 10.
    W. Dan and Y. Shibata, On the \(L^q\)-\(L^r\) estimates of the Stokes semigroup in a two dimensional exterior domain, J. Math. Soc. Japan, bf 51 (1999) 181–207.Google Scholar
  11. 11.
    W. Dan and Y. Shibata, remark on the \(L^q\)-\(L^\infty \) estimate of the Stokes semigroup in a 2-dimensional exterior domain, Pacifc J. of Mathematics, 189 (1999) 223–239.Google Scholar
  12. 12.
    W. Desch, M. Hieber and J. Prüss, \(L^p\) -theory of the Stokes equation in a half space, J. Evol. Equ. 1 (2001) 115–142.Google Scholar
  13. 13.
    H. Engler, Contractive properties for the heat equation in Sobolev spaces, J. of Functional Analysis, 64 (1985) 412–435.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Engler, B. Kawohl and S. Luckhaus, Gradient estimates for solutions of parabolic equations and systems, J. of Math. Anal. and Appl., 147 (1990) 309–329.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Farwig, H. Kozono and H. Sohr, An \(L^q\) -approach to Stokes and Navier–Stokes equations in general domains, Acta Math. 195 (2005) 21–53.Google Scholar
  16. 16.
    R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994) 607–643.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili, Rend. Sem. Matem. Univ. Padova, 27 (1957) 284–305.Google Scholar
  18. 18.
    G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady-state Problems, Second Edition, Springer Monographs in Mathematics. Springer. New-York (2011).zbMATHGoogle Scholar
  19. 19.
    V. Georgiev and K. Taniguchi, Gradient estimates and their optimality for heat equation in an exterior domain, arXiv:1710.00592
  20. 20.
    Y. Giga, The Stokes operator in \(L^r\) spaces, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 2, 85–89.Google Scholar
  21. 21.
    Y. Giga, Analyticity of the semigroup generated by the Stokes operator in \(L^r\) spaces, Math Z. 178 (1981) 297–329.Google Scholar
  22. 22.
    Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo, 36 (1988) 103–130.MathSciNetGoogle Scholar
  23. 23.
    J. Heywood, On nonstationary Stokes flow past a obstacle, Indiana Univ. Math. J., 24 (1974) 271–284.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Heywood, The Navier–Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980) 639–681.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Hieber and P. Maremonti, Bounded analyticity of the Stokes semigroup on spaces of bounded functions, Recent Advances in Fluid Mechanics, Birkhuser, Basel, 2014.Google Scholar
  26. 26.
    M. Higaki, Navier wall law for nonstationary viscous incompressible flows, J. Differential Equations, 260 (2016) 7358–7396, Scholar
  27. 27.
    H. Iwashita, \( L^q\)\(L^r\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in Lq spaces, Math. Ann., 285 (1989) 265–289.Google Scholar
  28. 28.
    P. Maremonti, On the Stokes problem in exterior domains: the maximum modulus theorems, Discrete Contin. Dyn. Syst. 34 (2014) 2135–2171.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    P. Maremonti and S. Shimizu, Global existence of solutions to 2-D Navier–Stokes flow with non-decaying initial data in exterior domains, J. Math. Fluid Mech., 20 (2018) 899–927, Scholar
  30. 30.
    P. Maremonti and S. Shimizu, Global existence of solutions to 2-D Navier–Stokes flow with non-decaying initial data in half-plane, J. Diff. Equations, 265 (2018) 5352–5383.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    P. Maremonti and V.A. Solonnikov, An estimate for the solutions of Stokes system in exterior domains, Zap. Nauch. Sem. LOMI, 180 (1990) 105–120, trasl. in J. of Math. Sciences (1994) 229–239.Google Scholar
  32. 32.
    P. Maremonti and V.A. Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 3, 395–449.Google Scholar
  33. 33.
    V.A. Solonnikov, Estimates of the solutions of the nonstationary Navier–Stokes system. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 153–231, (e.t.) J. Soviet Math., 8 (1977), 467–529.Google Scholar
  34. 34.
    V.A. Solonnikov, On the estimates of the solution of the evolution Stokes problem in weighted Hölder norms, Annali dell’Univ. di Ferrara, (Sez. VII, Sci. Mat.), 52 (2006) 137–172.Google Scholar
  35. 35.
    V.A. Solonnikov, On nonstationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity, Function theory and applications, J. Math. Sci. (N. Y.) 114 (2003), no. 5, 1726–1740.Google Scholar
  36. 36.
    S. Ukai, A solution formula for the Stokes equation in \(\mathbb{R}^n_+\), Theory of nonlinear evolution equations and its applications (Japanese). Sūrikaisekikenkyūsho Kōkyūroku No. 604 (1987), 124–138.Google Scholar
  37. 37.
    M. Yamazaki, The Navier–Stokes equations in the weak- \(L^n\) space with time-dependent external force, Math. Ann., 317 (2000) 635–675.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità degli Studi della Campania “L. Vanvitelli”CasertaItaly

Personalised recommendations