A note on singularities in finite time for the \(L^{2}\) gradient flow of the Helfrich functional

  • Simon BlattEmail author
Open Access


This work investigates the formation of singularities under the steepest descent \(L^2\)-gradient flow of \({{\,\mathrm{{ W}}\,}}_{\lambda _1, \lambda _2}\) with zero spontaneous curvature, i.e., the sum of the Willmore energy, \(\lambda _1\) times the area, and \(\lambda _2\) times the signed volume of an immersed closed surface without boundary in \(\mathbb {R}^3\). We show that in the case that \(\lambda _1>1\) and \(\lambda _2=0\), any immersion develops singularities in finite time under this flow. If \(\lambda _1 >0\) and \(\lambda _2 > 0\), embedded closed surfaces with energy less than
$$\begin{aligned} 8\pi +\min \left\{ \left( 16 \pi \lambda _1^3\right) \bigg /\left( 3\lambda _2^2\right) , 8\pi \right\} \end{aligned}$$
and positive volume evolve singularities in finite time. If in this case the initial surface is a topological sphere and the initial energy is less than \(8 \pi \), the flow shrinks to a round point in finite time. We furthermore discuss similar results for the case that \(\lambda _2\) is negative. These results strengthen the ones of McCoy and Wheeler (Commun Anal Geom 24(4):843–886, 2016). For \(\lambda _1 >0\) and \(\lambda _2 \ge 0\), they showed that embedded closed spheres with positive volume and energy close to \(4\pi \), i.e., close to the Willmore energy of a round sphere, converge to round points in finite time.



Open access funding provided by Paris Lodron University of Salzburg.


  1. 1.
    Wilhelm Blaschke. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. III: Differentialgeometrie der Kreise und Kugeln. Bearbeitet von G. Thomsen. X + 474 S. Berlin, J. Springer (Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen), 1929.Google Scholar
  2. 2.
    Simon Blatt. A singular example for the Willmore flow. Analysis, 29(4):407–430, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Robert L. Bryant. A duality theorem for Willmore surfaces. J. Differential Geom., 20(1):23–53, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gerhard Dziuk, Ernst Kuwert, and Reiner Schätzle. Evolution of elastic curves in \(\mathbb{R}^n\): existence and computation. SIAM J. Math. Anal., 33(5):1228–1245 (electronic), 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Joachim Escher, Uwe F. Mayer, and Giere Simonett. The surface diffusion flow for immersed hypersurfaces. Siam Journal of Mathematical Analysis, pages 1419–1433, 1998.Google Scholar
  6. 6.
    Wolfgang Helfrich. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C, 28(11–12):693–703, 1973.CrossRefGoogle Scholar
  7. 7.
    Gerhard Huisken and Alexander Polden. Geometric evolution equations for hypersurfaces. In Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Math., pages 45–84. Springer, Berlin, 1999.Google Scholar
  8. 8.
    Yoshihito Kohsaka and Takeyuki Nagasawa. On the existence of solutions of the Helfrich flow and its center manifold near spheres. Diff. Integr. Equ. 19(2):121–142, 2006.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ernst Kuwert and Reiner Schätzle. The Willmore flow with small initial energy. J. Differential Geom., 57(3):409–441, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ernst Kuwert and Reiner Schätzle. Gradient flow for the Willmore functional. Comm. Anal. Geom., 10(2):307–339, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ernst Kuwert and Reiner Schätzle. Removability of point singularities of Willmore surfaces. Ann. of Math. (2), 160(1):315–357, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yannan Liu. Gradient flow for the Helfrich functional. Chin. Ann. Math. Ser. B, 33(6):931–940, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peter Li and Shing-Tung Yau. A new conformal invariant and its applications to the willmore conjecture and the first eigenvalue of compact surfaces. Inventiones mathematicae, 69(2):269–291, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carlo Mantegazza. Lecture notes on mean curvature flow, volume 290 of Progress in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2011.Google Scholar
  15. 15.
    Nelson Max and Tom Banchoff. Every sphere eversion has a quadruple point. Contributions to Analysis and Geometry, The Johns Hopkins University Press, Baltimore and London, pages 191–209, 1981.Google Scholar
  16. 16.
    Uwe F. Mayer and Gieri Simonett. Self-intersections for Willmore flow. In Evolution equations: applications to physics, industry, life sciences and economics (Levico Terme, 2000), volume 55 of Progr. Nonlinear Differential Equations Appl., pages 341–348. Birkhäuser, Basel, 2003.Google Scholar
  17. 17.
    James McCoy and Glen Wheeler. A classification theorem for Helfrich surfaces. Mathematische Annalen, 357(4):1485–1508, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    James McCoy and Glen Wheeler. Finite time singularities for the locally constrained willmore flow of surfaces. Communications in Analysis and Geometry, 24(4):843–886, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Leon Simon. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom., 1(2):281–326, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Peter Topping. Mean curvature flow and geometric inequalities. J. Reine Angew. Math., 503:47–61, 1998.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Paris Lodron Universität SalzburgSalzburgAustria

Personalised recommendations