Advertisement

Strong solutions of a neutral type equation with finite delay

  • Verónica Poblete
  • Felipe Poblete
  • Juan C. PozoEmail author
Article
  • 21 Downloads

Abstract

This paper is concerned to study the existence and uniqueness of solution of neutral type differential equations, by using the maximal regularity property of the first-order abstract Cauchy problem with finite delay on Lebesgue spaces defined at the line. The main tools that we use to achieve our goals are an operator-valued version of Miklhin’s Fourier multiplier theorem, weighted Sobolev spaces on the real line and fixed point arguments.

Mathematics Subject Classification

Primary 34K40 Secondary 34G10 42B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    H. Amann. Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory. Monographs in Mathematics, vol 89., Birkhäuser, Basel-Boston-Berlin, 1995.Google Scholar
  2. 2.
    H. Amann. Operator-valued Fourier multipliers, vector-valued Besov spaces and applications. Math. Nachr. 186 (1997), 5–56.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    W. Arendt, M. Duelli. Maximal \(L^p\)-regularity for parabolic and elliptic equations on the line. J. Evol. Equations, 6 (2006), 773–790.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. Arendt, C. J.K. Batty, S. Bu. Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Math. 160 (2004), 23–51.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    W. Arendt, S. Bu. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. Arendt, S. Bu. Operator-valued Fourier multiplier on periodic Besov spaces and applications. Proc. Edim. Math. Soc. 47 (2) (2004), 15–33.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    W. Arendt, S. Bu. Tools for maximal regularity. Math. Proc. Cambridge Ph. Soc. 134 (2) (2003), 317–336.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W. Arendt, C. Batty, M. Hieber, F. Neubrander. Vector-Valued Laplace transforms and Cauchy problems, Monogr. Math., vol. 96, Birkhäuser, Basel, 2001.Google Scholar
  9. 9.
    S. Bu, Y. Fang. Periodic solutions of delay equations in Besov spaces and Triebel-Lizorkin spaces. Taiwanese J. Math. 13 (2009), 3, 1063–1076.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ph. Clément, J. Prüss, An operator-valued transference principle and maximal regularity on vector-valued \(L_p\) -spaces, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 67–87, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.Google Scholar
  11. 11.
    R. Datko. Linear autonomous neutral differential equations in a Banach space. J. Diff. Equations, 25(2):258–274, 1977.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Denk, M. Hieber, J. Prüss, \(R\) -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (788), 2003.Google Scholar
  13. 13.
    M. Girardi, L. Weis. Operator-valued Fourier multiplier theorems on Besov spaces.Math. Nach. 251 (2003) 34–51.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Girardi, L. Weis. Operator-valued Fourier multiplier theorems on \(L_p(X)\) and geometry of Banach spaces. J. Funct. Anal. 204 (2) (2003), 320–354.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J.K. Hale. Functional Differential Equations. Appl. Math. Sci., 3, Springer-Verlag, 1971.Google Scholar
  16. 16.
    J.K. Hale, S.M. Verduyn. Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993.Google Scholar
  17. 17.
    E. Hernández. Existence results for partial neutral functional integrodifferential equations with unbounded delay. J. Math. Anal. Appl., 292(1):194–210, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Henríquez, E. Hernández. Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay. J. Math. Anal. Appl., 221(2):499–522, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P. Kunstmann, L. Weis. Maximal \(L_p\) -regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \) -functional calculus, Functional analytic methods for evolution equations, 65–311, Lecture Notes in Math., 1855, Springer, Berlin, 2004.Google Scholar
  20. 20.
    V. Lakshmikantham, L. Wen, B. Zhang. Theory of differential equations with unbounded delay. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, v 298, 1994.Google Scholar
  21. 21.
    C. Lizama, V. Poblete. Maximal regularity of delay equations in Banach spaces. Studia Math. 175 (1) (2006), 91–102.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    C. Lizama, V. Poblete. Periodic solutions of fractional differential equations with delay. J. Evol. Equations, 11 (2011), 57–70.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Mielke. Über maximale \(L^p\)-Regularität für Differentialgleichungen in Banach- und Hilbert-Räumen. Math. Ann. 277 (1987), no. 1, 121–133.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S. Schweiker. Asymptotics, Regularity and Well-Posedness of First- and Second-Order Differential Equations on the Line. PhD Thesis, 2000, Universität Ulm.Google Scholar
  25. 25.
    G. Webb. Functional differential equations and nonlinear semigroups in \(L^p\)-spaces. J. Differential Equations 29 (1976), 71–89.CrossRefzbMATHGoogle Scholar
  26. 26.
    L. Weis. Operator-valued Fourier multiplier theorems and maximal \(Lp\)-regularity. Math. Ann. 319, (2001) 735–758.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Wu. Theory and Applications of Partial Differential Equations. Appl. Math. Sci. 119, Springer Verlag, 1996.Google Scholar
  28. 28.
    M. Wu, Y. He, J. She. Stability analysis and robust control of time-delay systems. Science Press Beijing, Beijing; Springer-Verlag, Berlin, 2010.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Verónica Poblete
    • 1
  • Felipe Poblete
    • 2
  • Juan C. Pozo
    • 3
    Email author
  1. 1.Departamento de Matemáticas, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Instituto de Ciencias Físicas y Matemáticas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  3. 3.Departamento de Matemáticas y EstadísticasFacultad de Ingeniería y CienciasTemucoChile

Personalised recommendations