Advertisement

Journal of Evolution Equations

, Volume 18, Issue 4, pp 1843–1852 | Cite as

T-minima for nonlinear parabolic problems: a variational approach for \(L^1\) data

  • Lucio Boccardo
  • Luigi Orsina
  • Maria Michaela Porzio
Article
  • 26 Downloads

Abstract

In this paper, we study nonlinear parabolic problems with \(L^1\) data. We prove existence of solutions via minimization, using a variational approach.

Keywords

Nonlinear parabolic equations Irregular data Variational approach 

Mathematics Subject Classification

35K55 35K65 35K67 35R05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank the anonymous referee for the useful comments and remarks. This work was partially supported by GNAMPA-INdAM.

References

  1. 1.
    P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez: An \(L^1\) theory of existence and uniqueness of solutions of nonlinear elliptic equations; Annali Sc. Norm. Sup. Pisa, 22 (1995), 241–273.zbMATHGoogle Scholar
  2. 2.
    L. Boccardo: \(T\)-minima, an approach to minimization problems in \(L^1\); Contributions in honor of the memory of Ennio De Giorgi, Ricerche Mat., 49 (2000), 135–154.MathSciNetzbMATHGoogle Scholar
  3. 3.
    L. Boccardo, T. Gallouët: Nonlinear elliptic and parabolic equations involving measure data; J. Funct. Anal., 87 (1989), 149–169.MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Boccardo, A. Dall’Aglio, T. Gallouët, L. Orsina: Nonlinear parabolic equations with measure data; J. Funct. Anal., 147 (1997), 237–258.MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Bögelein, F. Duzaar, P. Marcellini: Parabolic systems with \(p,q\)-growth: a variational approach; Arch. Ration. Mech. Anal., 210 (2013), 219–267.MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Bögelein, F. Duzaar, P. Marcellini: Existence of evolutionary variational solutions via the calculus of variations; J. Differ. Equ., 256 (2014), 3912–3942.MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Brezis, I. Ekeland: Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps; C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A971–A974.Google Scholar
  8. 8.
    H. Brezis, I. Ekeland: Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps; C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1197–A1198.Google Scholar
  9. 9.
    A. Dall’Aglio, L. Orsina: Existence results for some nonlinear parabolic equations with nonregular data; Differ. Integral Equ., 5 (1992), 1335–1354.MathSciNetzbMATHGoogle Scholar
  10. 10.
    C. Leone: T-minima, some remarks about existence, uniqueness and stability results; Asymptot. Anal., 29 (2002), 273–282.MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Lichnewsky, R. Temam: Pseudosolutions of the time-dependent minimal surface problem; J. Differ. Equ., 30 (1978), 340–364.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Prignet: Existence and uniqueness of entropy solutions of parabolic problems with \(L^1\) data; Nonlinear Anal., 28 (1997), 1943–1954.MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Simon: Compact sets in the space \(L^p(0,T;B)\); Ann. Mat. Pura Appl., 146 (1987), 65–96.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lucio Boccardo
    • 1
  • Luigi Orsina
    • 1
  • Maria Michaela Porzio
    • 1
  1. 1.Dipartimento di MatematicaSapienza Università di RomaRomeItaly

Personalised recommendations