Advertisement

Journal of Evolution Equations

, Volume 18, Issue 4, pp 1697–1712 | Cite as

On the stability in phase-lag heat conduction with two temperatures

  • Antonio Magaña
  • Alain Miranville
  • Ramón Quintanilla
Article

Abstract

We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.

Keywords

Phase-lag heat conduction Well-posedness Stability Instability Energy methods Spectral analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Progress in Physics, 3 (2009), 60–63.Google Scholar
  2. 2.
    S. Banik and M. Kanoria. Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Applied Mathematics and Mechanics, 33 (2012), 483–498.MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Borgmeyer, R. Quintanilla and R. Racke, Phase-lag heat conduction: decay rates for limit problems and well-posedness, J. Evolution Equations 14 (2014), 863–884.MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation, C. R. Acad. Sci. Paris, 247 (1958), 431–433.MathSciNetzbMATHGoogle Scholar
  5. 5.
    P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 614–627.CrossRefGoogle Scholar
  6. 6.
    P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 969–970.CrossRefGoogle Scholar
  7. 7.
    P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Applied Mathematics and Physics (ZAMP), 20 (1969), 107–112.CrossRefGoogle Scholar
  8. 8.
    S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231–238.CrossRefGoogle Scholar
  9. 9.
    M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Letters 22 (2009), 1374–1379.MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. A. Ezzat, A. S. El-Karamany and A. A. El-Bary, Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer, Mycrosystem Technologies, (2017),  https://doi.org/10.1007/s00542-017-3425-6.
  11. 11.
    M. A. Ezzat, A. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuclear Engineering and Design, 252 (2012), 267–277.CrossRefGoogle Scholar
  12. 12.
    A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 44 (1971), 387–399.MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. A. Hader, M. A. Al-Nimr and B. A. Abu Nabah, The Dual-Phase-Lag Heat Conduction Model in Thin Slabs Under a Fluctuating Volumetric Thermal Disturbance, International J. Thermophysics, 23 (2002), 1669–1680.Google Scholar
  16. 16.
    P. M. Jordan and R. Quintanilla, A note on the two-temperature theory with dual-phase-lag decay: some exact solutions, Mechanics Research Communications, 36 (2009), 796–803.MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.E. Marsden and T.J.R Hughes, Topics in the mathematical foundations of elasticity, in: Nonlinear analysis and mechanics: Heriot–Watt Symposium, vol. II, 30–285. Pitman Research Notes in Mathematics 27, London 1978.Google Scholar
  18. 18.
    A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Applied Mathematics and Optimization, 63 (2011), 133–150.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Mukhopadhyay, R Prasad and R. Kumar, On the theory of Two-Temperature Thermoelaticity with Two Phase-Lags, J. Thermal Stresses, 34 (2011), 352–365.CrossRefGoogle Scholar
  20. 20.
    M. A. Othman, W. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149–158.CrossRefGoogle Scholar
  21. 21.
    R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217–227.CrossRefGoogle Scholar
  22. 22.
    R. Quintanilla, A Well-Posed Problem for the Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 31 (2008), 260–269.CrossRefGoogle Scholar
  23. 23.
    R. Quintanilla, A Well-Posed Problem for the Three-Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 32 (2009), 1270–1278.CrossRefGoogle Scholar
  24. 24.
    R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977–1001.MathSciNetCrossRefGoogle Scholar
  25. 25.
    R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209–1213.CrossRefGoogle Scholar
  26. 26.
    R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A., 463 (2007), 659–674.MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24–29.CrossRefGoogle Scholar
  28. 28.
    R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differential and Integral Equations, 28 (2015), 291–308.MathSciNetzbMATHGoogle Scholar
  29. 29.
    S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International J. Heat and Mass Transfer, 78 (2014), 58–63.CrossRefGoogle Scholar
  30. 30.
    S. M. Said and M. I. A. Othman, Effect of mechanical force, rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium with two theories, Mechanics of Time-Dependent Materials, 21 (2017), 245–261.CrossRefGoogle Scholar
  31. 31.
    D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8–16.CrossRefGoogle Scholar
  32. 32.
    W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica, 16 (1973), 83–117.CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, International Journal of Heat and Mass Transfer, 52 (2009), 4829–4834.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Magaña
    • 1
  • Alain Miranville
    • 2
  • Ramón Quintanilla
    • 1
  1. 1.Departament de MatemàtiquesUPCTerrassaSpain
  2. 2.Laboratoire de Mathématiques et ApplicationsUniversité de PoitiersChasseneuil Futuroscope CedexFrance

Personalised recommendations