Advertisement

Journal of Evolution Equations

, Volume 18, Issue 4, pp 1675–1696 | Cite as

Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusion

  • Qiao Liu
  • Jihong Zhao
Article
  • 51 Downloads

Abstract

In this paper, we consider some sufficient conditions for the breakdown of local smooth solutions to the Cauchy problem of the 3D Navier–Stokes/Poisson–Nernst–Planck system modeling electro-diffusion in terms of pressure (or gradient of pressure or one directional derivative of pressure) in the framework of the anisotropic Lebesgue spaces. Precisely, let T be the maximum existence time of local smooth solution. Then if \(T<+\infty \), we have
$$\begin{aligned} \int _{0}^{T}\left\| \left\| \left\| P\right\| _{L^{p}_{x_{1}}} \right\| _{L^{q}_{x_{2}}} \right\| _{L^{r}_{x_{3}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$
where \(\frac{2}{\beta }+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2\), \(2\le p,q,r\le \infty \) and \(1-(\frac{1}{p}+\frac{1}{q}+\frac{1}{r})\ge 0\), and
$$\begin{aligned} \int _{0}^{T}\left\| \left\| \left\| \nabla P\right\| _{L^{p}_{x_{1}}}\right\| _{L^{q}_{x_{2}}} \right\| _{L^{r}_{x_{3}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$
where \(\frac{2}{\beta }+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3\), \(1\le p,q,r\le \infty \) and \(2-(\frac{1}{p}+\frac{1}{q}+\frac{1}{r})\ge 0\), and
$$\begin{aligned} \int _{0}^{T}\left\| \Vert \partial _{3}P\Vert _{L^{\gamma }_{x_{3}}} \right\| _{L^{\alpha }_{x_{1}x_{2}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$
where \(\frac{2}{\beta }+\frac{1}{\gamma }+\frac{2}{\alpha }=k\in [2,3)\) and \(\frac{3}{k}\le \gamma \le \alpha < \frac{1}{k-2}\). These results are even new for the 3D incompressible Navier–Stokes equations.

Keywords

Navier–Stokes/Poisson–Nernst–Planck system Blowup Pressure Anisotropic Lebesgue spaces 

Mathematics Subject Classification

35B44 35K55 35Q35 76W05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balbuena P. B., Wang Y.: Lithium-ion Batteries, Solid-electrolyte Interphase. Imperial College Press (2004)Google Scholar
  2. 2.
    Beirão da Veiga H.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}}^{n}\). Chin. Ann. Math. Series B 16, 407–412 (1995)Google Scholar
  3. 3.
    Berselli L. C., Galdi G. P.: Regularity criteria involving the pressure for the weak solutions of the Navier–Stokes equations. Proc. Amer. Math. Soc. 130, 3585–3595 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electrokinetic flows. SIAM J. Math. Anal. 46(2), 1263–1316 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caffarelli L., Kohn J., Nirenberg L.: Partial regularity for suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cao C., Titi E.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Rational Mech. Anal. 202, 919–932 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cao C., Titi E.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chae D., Lee J.: Regularity criterion in terms if pressure for the Navier–Stokes equations. Nonlinear Anal. 46, 727–735 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen Q., Zhang Z.: Regularity criterion via the pressure on weak solutions to the 3D Navier–Stokes equations. Proc. Amer. Math. Soc. 135(6), 1829–1837 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Deng C., Zhao J., Cui S.: Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices. J. Math. Anal. Appl. 377, 392–405 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Deng C., Liu C.: Largest well-posed spaces for the general diffusion system with nonlocal interactions. J. Functional Anal. 272, 4030–4062 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Escauriaza L., Seregin G., Šverák V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58, 3–44 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fan J., Gao H.: Uniqueness of weak solutions to a nonlinear hyperbolic system in electrohydrodynamics. Nonlinear Anal. 70, 2382–2386 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fan J., Jiang S., Nakamura G., Zhou Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13(4), 557–571 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fan J., Jiang S., Ni G.: On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure. J. Differential Equations 244, 2936–2979 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fan J., Nakamura G., Zhou Y.: On the Cauchy problem for a model of electro-kinetic fluid. Applied Mathematics Letters 25, 33–37 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fischer A., Saal J.: Global weak solutions in three space dimensions for electrokinetic flow processes. J. Evol. Equ. 17(1), 309–333 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Giga Y.: Solutions for semilinear parabolic equations in \(L^{p}\) and regularity of weak solutions of the Navier–Stokes system. J. Differential Equations 61, 186–212 (1986)CrossRefGoogle Scholar
  19. 19.
    Hopf E.: Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen. Math. Nachr. 4, 213–231 (1951)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jerome J. W.: Analytical approaches to charge transport in a moving medium. Tran. Theo. Stat. Phys. 31, 333–366 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jerome J. W.: The steady boundary value problem for charged incompressible fluids: PNP/Navier–Stokes systems. Nonlinear Anal. 74, 7486–7498 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jerome J. W., Sacco R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem. Nonlinear Anal. 71, 2487–2497 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lemarié-Rieusset P. G.: Recent developments in the Navier–Stokes problem. Chapman and Hall/CRC (2002)Google Scholar
  25. 25.
    Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Qian C.: A generalized regularity criterion for 3D Naiver–Stokes equations in terms of one velocity component. J. Differential Equations 260, 3477–3494 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rubinstein I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia (1990)CrossRefGoogle Scholar
  29. 29.
    Ryham R. J.: Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. Analysis of PDEs. arXiv:0910.4973v1, 1–60 (2009)
  30. 30.
    Ryham R. J., Liu C., Zikatanov L.: Mathematical models for the deformation of electrolyte droplets. Discrete Contin. Dyn. Syst. Ser. B 8(3), 649–661 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Scheffer V.: Partial regulaity of solutions to the Navier–Stokes equations. Pacific J. Math. 66, 535–552 (1976)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55, 97–112 (1977)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Schmuck M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Struwe M.: On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9, 235–242 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang Z., Yin Z.: Global well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in dimension two. Applied Mathematics Letters 40, 102–106 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhao J., Bai M.: Blow-up criteria for the three dimensional nonlinear dissipative system modeling electro-hydrodynamics. Nonlinear Analysis: Real World Applications 31, 210–226 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhao J., Deng C., Cui S.: Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces. J. Math. Physics 51, 093101 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhao J., Liu Q.: Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces. J. Differential Equations 263, 1293–1322 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhao J., Zhang T., Liu Q.: Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete Contin. Dyn. Syst. 35(1), 555–582 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhou Y.: On regularity criteria in terms of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{3}\). Proc. Amer. Math. Soc. 134, 149–156 (2005)CrossRefGoogle Scholar
  42. 42.
    Zhou Y.: On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{N}\). Z. Angew. Math. Phys. 57, 384–392 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhou Y., Pokorný M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHunan Normal UniversityChangshaChina
  2. 2.School of Mathematics and Information ScienceBaoji University of Arts and ScienceBaojiChina
  3. 3.Institute of Applied Mathematics, College of ScienceNorthwest A&F UniversityYanglingChina

Personalised recommendations