Journal of Evolution Equations

, Volume 18, Issue 3, pp 1427–1469 | Cite as

Strong solutions to a nonlinear stochastic Maxwell equation with a retarded material law

  • Luca HornungEmail author


We study the Cauchy problem for a semilinear stochastic Maxwell equation with Kerr-type nonlinearity and a retarded material law. We show existence and uniqueness of strong solutions using a refined Faedo–Galerkin method and spectral multiplier theorems for the Hodge–Laplacian. We also make use of a rescaling transformation that reduces the problem to an equation with additive noise to get an appropriate a priori estimate for the solution.


Stochastic Maxwell equations Kerr-type nonlinearity Retarded material law Monotone coefficients Weak solutions Strong solutions Generalised Gaussian bounds Spectral multiplier theorems Hodge–Laplacian Rescaling transformation 

Mathematics Subject Classification

35Q61 35R60 60H15 34L05 32A70 60H30 76M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Guillaume Bal. Lecture notes. waves in random media., Columbia, 2006.
  3. 3.
    Z. Brzezniak, F. Hornung, and L. Weis. Martingale solutions for the NLS in the energie space. to appear, 2017.Google Scholar
  4. 4.
    Viorel Barbu and Michael Röckner. On a random scaled porous media equation. J. Differential Equations, 251(9):2494–2514, 2011.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Viorel Barbu and Michael Röckner. Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal., 209(3):797–834, 2013.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Viorel Barbu, Michael Röckner, and Deng Zhang. Stochastic nonlinear schrödinger equations with linear multiplicative noise: Rescaling approach. Journal of Nonlinear Science, 24(3):383–409, 2014.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Viorel Barbu, Michael Röckner, and Deng Zhang. Stochastic nonlinear Schrödinger equations. Nonlinear Anal., 136:168–194, 2016.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chuchu Chen, Jialin Hong, and Liying Zhang. Preservation of physical properties of stochastic maxwell equations with additive noise via stochastic multi-symplectic methods. Journal of Computational Physics, 306:500–519, 2016.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Emmanuele DiBenedetto. Degenerate parabolic equations. Universitext. Springer, New York, 1993.CrossRefGoogle Scholar
  10. 10.
    Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications ; 152. Cambridge Univ. Press, Cambridge, 2. ed. edition, 2014.Google Scholar
  11. 11.
    P. Elbau. Sequential Lower Semi-Continuity of Non-Local Functionals. ArXiv e-prints, April 2011.Google Scholar
  12. 12.
    T.R. Field. Electromagnetic Scattering from Random Media. International Series of Monographs on Physics. OUP Oxford, 2008.zbMATHGoogle Scholar
  13. 13.
    Jean-Pierre Fouque, editor. Wave propagation and time reversal in randomly layered media. Stochastic Modelling and Applied Probability; 56. Springer, New York, 2007.Google Scholar
  14. 14.
    Loukas Grafakos. Classical fourier analysis. Graduate texts in mathematics ; 249. Springer, New York, 3. ed. edition, 2014.Google Scholar
  15. 15.
    Marlis Hochbruck, Tobias Jahnke, and Roland Schnaubelt. Convergence of an ADI splitting for Maxwell’s equations. Numer. Math., 129(3):535–561, 2015.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jialin Hong, Lihai Ji, and Liying Zhang. A stochastic multi-symplectic scheme for stochastic maxwell equations with additive noise. Journal of Computational Physics, 268:255 – 268, 2014.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dirk Hundertmark, Martin Meyries, Lars Machinek, and Roland Schnaubelt. Operator semigroups and dispersive equations. Karlsruhe, 2013.Google Scholar
  18. 18.
    Andreas Kirsch and Frank Hettlich. The mathematical theory of time-harmonic Maxwells equations: Expansion-, integral-, and variational methods. Applied mathematical sciences; 190. Springer, Cham, 2015.Google Scholar
  19. 19.
    Peer Christian Kunstmann and Matthias Uhl. \(L^p\)-spectral multipliers for some elliptic systems. Proc. Edinb. Math. Soc. (2), 58(1):231–253, 2015.Google Scholar
  20. 20.
    Peer Christian Kunstmann and Matthias Uhl. Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces. J. Operator Theory, 73(1):27–69, 2015.MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Kriegler and L. Weis. Spectral multiplier theorems via \(H^\infty \) calculus and \(R\)-bounds. ArXiv e-prints, December 2016.Google Scholar
  22. 22.
    Christoph Kriegler and Lutz Weis. Paley-Littlewood decomposition for sectorial operators and interpolation spaces. Math. Nachr., 289(11-12):1488–1525, 2016.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Graeme Milton. The Theory of Composites, volume 6 of Cambridge monographs on applied and computational mathematics. Cambridge, Cambridge, 2002.Google Scholar
  24. 24.
    Marius Mitrea. Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J., 125(3):467–547, 2004.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Marius Mitrea and Sylvie Monniaux. On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds. Trans. Amer. Math. Soc., 361(6):3125–3157, 2009.MathSciNetCrossRefGoogle Scholar
  26. 26.
    El-Maati Ouhabaz. Analysis of heat equations on domains. London Mathematical Society monographs ; N.S., 31. Princeton University Press, Princeton, NJ [u.a.], 2005.Google Scholar
  27. 27.
    Claudia Prévôt and Michael Röckner. A concise course on stochastic partial differential equations, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.Google Scholar
  28. 28.
    G. F. Roach, I. G. Stratis, and A. N. Yannacopoulos. Mathematical analysis of deterministic and stochastic problems in complex media electromagnetics. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2012. Appendix D by George Dassios.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AnalysisKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations