Journal of Evolution Equations

, Volume 18, Issue 3, pp 1085–1114 | Cite as

The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates

  • Fabian HornungEmail author


We consider the stochastic NLS with nonlinear Stratonovich noise for initial values in \({L^2({\mathbb {R}^d})}\) and prove local existence and uniqueness of a mild solution for subcritical and critical nonlinearities. The proof is based on deterministic and stochastic Strichartz estimates. In the subcritical case we prove that the solution is global, if we impose an additional assumption on the nonlinear noise.


Nonlinear Schrödinger equation Stratonovich noise Stochastic Strichartz estimates 

Mathematics Subject Classification

35Q41 35R60 60H15 60H30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bang, P. L. Christiansen, F. If, K. Ø. Rasmussen, and Y. B. Gaididei. Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E, 49:4627–4636, May 1994.CrossRefGoogle Scholar
  2. 2.
    N. Burq, P. Gérard, and N. Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. American Journal of Mathematics, 126(3):569–605, 2004.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Z. Brzezniak, F. Hornung, and L. Weis. Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. arXiv preprint arXiv:1707.05610, 2017.
  4. 4.
    Z. Brzeźniak and A. Millet. On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact riemannian manifold. Potential Analysis, 41(2):269–315, 2013.CrossRefGoogle Scholar
  5. 5.
    Z. Brzeźniak. On stochastic convolution in Banach spaces and applications. Stochastics: An International Journal of Probability and Stochastic Processes, 61(3–4):245–295, 1997.MathSciNetzbMATHGoogle Scholar
  6. 6.
    V. Barbu, M. Röckner, and D. Zhang. Stochastic nonlinear Schrödinger equations with linear multiplicative noise: Rescaling approach. Journal of Nonlinear Science, 24(3):383–409, 2014.MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Barbu, M. Röckner, and D. Zhang. Stochastic nonlinear Schrödinger equations. Nonlinear Analysis: Theory, Methods & Applications, 136:168–194, 2016.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Viorel Barbu, Michael Röckner, and Deng Zhang. Stochastic nonlinear Schrödinger equations: no blow-up in the non-conservative case. Journal of Differential Equations, 2017.Google Scholar
  9. 9.
    T. Cazenave. Semilinear Schrödinger Equations. Courant lecture notes in mathematics. American Mathematical Society, 2003.Google Scholar
  10. 10.
    A. de Bouard and A. Debussche. A stochastic nonlinear Schrödinger equation with multiplicative noise. Communications in Mathematical Physics, 205(1):161–181, 1999.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. de Bouard and A Debussche. On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probability theory and related fields, 123(1):76–96, 2002.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. de Bouard and A. Debussche. The stochastic nonlinear Schrödinger equation in h 1. Stochastic Analysis and Applications, 21(1):97–126, 2003.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. de Bouard, A. Debussche, et al. Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise. The Annals of Probability, 33(3):1078–1110, 2005.MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. De Bouard and A. Debussche. Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation. Applied Mathematics and Optimization, 54(3):369–399, 2006.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Debussche and L. Di Menza. Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Physica D: Nonlinear Phenomena, 162(3):131–154, 2002.MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.-I. Doi. Remarks on the Cauchy problem for Schrödinger-type equations. Communications in Partial Differential Equations, 21(1–2):163–178, 1996.MathSciNetzbMATHGoogle Scholar
  17. 17.
    G. Da Prato and P.J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2014.Google Scholar
  18. 18.
    D. Hundertmark, M. Meyries, L. Machinek, and R. Schnaubelt. 16. Internet Seminar on Evolution Equations: Operator Semigroups and Dispersive Equations . [pdf] available at:, 2013.
  19. 19.
    F. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Springer, 2014.Google Scholar
  20. 20.
    F. Merle. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J., 69(2):427–454, 02 1993.MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Marzuola, J. Metcalfe, and D. Tataru. Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. Journal of Functional Analysis, 255(6):1497–1553, September 2008.MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Seidler. Da Prato-Zabczyk’s maximal inequality revisited. i. Mathematica Bohemica, 118(1):67–106, 1993.MathSciNetzbMATHGoogle Scholar
  23. 23.
    J.M.A.M. van Neerven, M. C. Veraar, and L. Weis. Stochastic integration in UMD Banach spaces. Ann. Probab., 35(4):1438–1478, 07 2007.MathSciNetCrossRefGoogle Scholar
  24. 24.
    J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. Stochastic evolution equations in UMD Banach spaces. Journal of Functional Analysis, 255(4):940–993, 2008.MathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Zhang. Strichartz and local smoothing estimates for stochastic dispersive equations with linear multiplicative noise. preprint, 2017. arXiv:1709.03812.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AnalysisKarlsruhe Institute for Technology (KIT)KarlsruheGermany

Personalised recommendations