Skip to main content
Log in

Local null controllability of viscous Camassa–Holm equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the viscous Camassa–Holm equation in a one-dimensional torus. We prove that we can steer the solution of the equation to a constant steady state at any given time, using a localized interior control, when initial condition is in a small ball near the constant steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems. Second edition, Systems and Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007.

  2. R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661–1664.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Camassa, D.D. Holm, J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994).

  4. S. Chowdhury, D. Mitra, M. Ramaswamy, M.Renardy, Null Controllability of the linearized compressible Navier Stokes System in One Dimension, J. Differential Equations 257 (2014), no. 10, 3813–3849.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136. American Mathematical Society, Providence, 2007.

    Google Scholar 

  6. R. Danchin, A few remarks on the Camassa Holm equation, Differential Integral Equations 14 (8) (2001) 953–988.

    MathSciNet  MATH  Google Scholar 

  7. R. Danchin, A note on well-posedness for Camassa Holm equation, J. Differential Equations 192 (2) (2003) 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.H. Dullin, A.G. Gottwald, D.D. Holm, Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves. In memoriam Prof. Philip Gerald Drazin 1934-2002. Fluid Dynam. Res. 33 (2003), no. 1–2, 73–95.

  9. J. Edward, Ingham-type inequalities for complex frequencies and applications to control theory, J. Math. Anal. Appl. 324 (2006), 941–954.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Foias, Holm, D. Darryl, E.S. Titi, The Navier–Stokes-alpha model of fluid turbulence, Advances in nonlinear mathematics and science. Phys. D 152/153 (2001), 505–519.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Foias, Holm, D. Darryl, E.S. Titi, The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations 14 (2002), no. 1, 135.

  12. A.S. Fokas, B. Fuchssteiner, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981/1982) 47–66.

  13. P.Gao, Null controllability of the viscous Camassa–Holm equation with moving control, Proc. Indian Acad. Sci. Math. Sci. 126 (2016), no. 1, 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Glass, Controllability and asymptotic stabilization of the Camassa–Holm equation, J. Differential Equations 245 (2008), no. 6, 1584–1615.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Gozzi, P. Loreti, Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. 37 (1999), no. 4, 1195–1221

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Hansen, Bounds on functions biorthogonal to complex exponentials; control of damped elastic systems, J. Math. Anal. Appl. 158 (1991), 487–508.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Liu, T. Takahashi, M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1, 20–42.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. López, E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 5, 543–580.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Micu, On the controllability of the linearized Benjamin–Bona–Mahony equation, SIAM J. Control Optim. 39 (2001), no. 6, 1677–1696.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  21. T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The window problem for series of complex exponentials, J. Fourier Anal. Appl. 6 (2000), 233–254.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Tian, C. Shen, D. Ding, Optimal control of the viscous Camassa–Holm equation, Nonlinear Anal. Real World Appl. 10 (2009), no. 1, 519–530.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Yu, The existence of solution for viscous Camassa–Holm equations on bounded domain in five dimensions, J. Math. Anal. Appl. 429 (2015), no. 2, 849–872.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Zabczyk, Mathematical control theory. An introduction. Reprint of the 1995 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008.

Download references

Acknowledgements

The author would like to thank Prof. Mythily Ramaswamy for useful discussions. The author is grateful to the referee for valuable comments which improved the manuscript. The author acknowledges the financial support from the Airbus Group Corporate Foundation Chair in Mathematics of Complex Systems established in TIFR, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjana Mitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, D. Local null controllability of viscous Camassa–Holm equation. J. Evol. Equ. 18, 627–657 (2018). https://doi.org/10.1007/s00028-017-0414-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-017-0414-2

Mathematics Subject Classifications

Keywords

Navigation