Advertisement

Journal of Evolution Equations

, Volume 17, Issue 1, pp 1–15 | Cite as

Preface

  • Dieter Bothe
  • Robert Denk
  • Matthias Hieber
  • Roland Schnaubelt
  • Gieri Simonett
  • Mathias Wilke
  • Rico ZacherEmail author
Article
  • 284 Downloads

Books

  1. B1.
    J. Prüss. Evolutionary integral equations and applications, volume 87 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1993. Modern Birkhäuser Classics, 2nd ed. 2012.Google Scholar
  2. B2.
    R. Denk, M. Hieber, and J. Prüss. \(\cal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788):viii+114, 2003.Google Scholar
  3. B3.
    J. Prüss, R. Schnaubelt, and R. Zacher. Mathematische Modelle in der Biologie. Mathematik Kompakt. (Compact Mathematics). Birkhäuser Verlag, Basel, 2008. Deterministische homogene Systeme. (Deterministic homogeneous systems).Google Scholar
  4. B4.
    J. Prüss and M. Wilke. Gewöhnliche Differentialgleichungen und dynamische Systeme. Grundstudium Mathematik. (Basic Study of Mathematics). Birkhäuser/Springer Basel AG, Basel, 2010.Google Scholar
  5. B5.
    J. Prüss and G. Simonett. Moving interfaces and quasilinear parabolic evolution equations, volume 105 of Monographs in Mathematics. Birkhäuser/Springer, 2016.Google Scholar

Mathematical Articles

  1. 1.
    J. Prüss. On semilinear evolution equations in Banach spaces. J. Reine Angew. Math., 303/304:144–158, 1978.MathSciNetzbMATHGoogle Scholar
  2. 2.
    J. Prüss. Periodic solutions of semilinear evolution equations. Nonlinear Anal., 3(5):601–612, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Prüss. A note on strict solutions to semilinear evolution equations. Math. Z., 171(3):285–288, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Prüss. On semilinear parabolic evolution equations on closed sets. J. Math. Anal. Appl., 77(2):513–538, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Prüss. A characterization of uniform convexity and applications to accretive operators. Hiroshima Math. J., 11(2):229–234, 1981.MathSciNetzbMATHGoogle Scholar
  6. 6.
    J. Prüss. Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol., 11(1):65–84, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Prüss. On resolvent operators for linear integro-differential equations of Volterra type. J. Integral Equations, 5(3):211–236, 1983.MathSciNetGoogle Scholar
  8. 8.
    J. Prüss. On the qualitative behaviour of populations with age-specific interactions. Comput. Math. Appl., 9(3):327–339, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Prüss. Stability analysis for equilibria in age-specific population dynamics. Nonlinear Anal., 7(12):1291–1313, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Prüss. On the spectrum of \(C_{0}\)-semigroups. Trans. Amer. Math. Soc., 284(2):847–857, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R. Grimmer and J. Prüss. On linear Volterra equations in Banach spaces. Comput. Math. Appl., 11(1-3):189–205, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S.C. Hu, K. Deimling, and J. Prüss. Fixed points of weakly inward multivalued maps. Nonlinear Anal., 10(5):465–469, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J. Prüss. Periodic solutions of the thermostat problem. In Differential equations in Banach spaces (Bologna, 1985), volume 1223 of Lecture Notes in Math., pages 216–226. Springer, Berlin, 1986.Google Scholar
  14. 14.
    J. Prüss. On linear Volterra equations of parabolic type in Banach spaces. Trans. Amer. Math. Soc., 301(2):691–721, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J. Prüss. A positivity method for linear Volterra equations. In Nonlinear analysis and applications (Arlington, Tex., 1986), volume 109 of Lecture Notes in Pure and Appl. Math., pages 483–488. Dekker, New York, 1987.Google Scholar
  16. 16.
    J. Prüss. Positivity and regularity of hyperbolic Volterra equations in Banach spaces. Math. Ann., 279(2):317–344, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J. Prüss. Bounded solutions of Volterra equations. SIAM J. Math. Anal., 19(1):133–149, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    J. Prüss. Linear hyperbolic Volterra equations of scalar type. In Semigroup theory and applications (Trieste, 1987), volume 116 of Lecture Notes in Pure and Appl. Math., pages 367–385. Dekker, New York, 1989.Google Scholar
  19. 19.
    Ph. Clément and J. Prüss. On second order differential equations in Hilbert space. Boll. Un. Mat. Ital. B (7), 3(3):623–638, 1989.Google Scholar
  20. 20.
    J. Prüss. Regularity and integrability of resolvents of linear Volterra equations. In Volterra integro-differential equations in Banach spaces and applications (Trento, 1987), volume 190 of Pitman Res. Notes Math. Ser., pages 339–367. Longman Sci. Tech., Harlow, 1989.Google Scholar
  21. 21.
    J. Prüss and H. Sohr. On operators with bounded imaginary powers in Banach spaces. Math. Z., 203(3):429–452, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    J. Prüss. Maximal regularity of linear vector-valued parabolic Volterra equations. J. Integral Equa-tions Appl., 3(1):63–83, 1991.Google Scholar
  23. 23.
    Ph. Clément and J. Prüss. Completely positive measures and Feller semigroups. Math. Ann., 287(1):73–105, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J. Prüss. Quasilinear parabolic Volterra equations in spaces of integrable functions. In Semigroup theory and evolution equations (Delft, 1989), volume 135 of Lecture Notes in Pure and Appl. Math., pages 401–420. Dekker, New York, 1991.Google Scholar
  25. 25.
    Ph. Clément and J. Prüss. Global existence for a semilinear parabolic Volterra equation. Math. Z., 209(1):17–26, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    W. Arendt and J. Prüss. Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations. SIAM J. Math. Anal., 23(2):412–448, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    J. Prüss and H. Sohr. Imaginary powers of elliptic second order differential operators in \(L^p\)-spaces. Hiroshima Math. J., 23(1):161–192, 1993.MathSciNetzbMATHGoogle Scholar
  28. 28.
    W. Desch and J. Prüss. Counterexamples for abstract linear Volterra equations. J. Integral Equations Appl., 5(1):29–45, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    J. Prüss. Stability of linear evolutionary systems with applications to viscoelasticity. In Differential equations in Banach spaces (Bologna, 1991), volume 148 of Lecture Notes in Pure and Appl. Math., pages 195–214. Dekker, New York, 1993.Google Scholar
  30. 30.
    J. Prüss and W. Ruess. Weak almost periodicity of convolutions. J. Integral Equations Appl., 5(4):519–530, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    J. Prüss. Stability of linear hyperbolic viscoelasticity. In Workshop on the mathematical theory of nonlinear and inelastic material behaviour (Darmstadt, 1992), volume 239 of Bonner Math. Schriften, pages 43–52. Univ. Bonn, Bonn, 1993.Google Scholar
  32. 32.
    J. Prüss. Linear evolutionary integral equations on the line. In Evolution equations, control theory, and biomathematics (Han sur Lesse, 1991), volume 155 of Lecture Notes in Pure and Appl. Math., pages 485–513. Dekker, New York, 1994.Google Scholar
  33. 33.
    J. Prüss and W. Schappacher. Semigroup methods for age-structured population dynamics. In Jahrbuch Überblicke Mathematik, 1994, pages 74–90. Friedr. Vieweg, Braunschweig, 1994.Google Scholar
  34. 34.
    W. Desch and J. Prüss. Dynamical behavior of a two-phase chemically reacting system including mass transfer. Differential Integral Equations, 7(3-4):767–793, 1994.MathSciNetzbMATHGoogle Scholar
  35. 35.
    J. Prüss and W. Schappacher. Persistent age-distributions for a pair-formation model. J. Math. Biol., 33(1):17–33, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    G. Propst and J. Prüss. On wave equations with boundary dissipation of memory type. J. Integral Equations Appl., 8(1):99–123, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    J. Prüss. Poisson estimates and maximal regularity for evolutionary integral equations in \(L_p\)-spaces. Rend. Istit. Mat. Univ. Trieste, 28(suppl.):287–321 (1997), 1996. Dedicated to the memory of Pierre Grisvard.Google Scholar
  38. 38.
    S. Monniaux and J. Prüss. A theorem of the Dore-Venni type for noncommuting operators. Trans. Amer. Math. Soc., 349(12):4787–4814, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    M. Hieber and J. Prüss. Heat kernels and maximal \(L^p\) estimates for parabolic evolution equations. Comm. Partial Differential Equations, 22(9-10):1647–1669, 1997.MathSciNetzbMATHGoogle Scholar
  40. 40.
    G. Gripenberg, S.-O. Londen, and J. Prüss. On a fractional partial differential equation with dominating linear part. Math. Methods Appl. Sci., 20(16):1427–1448, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ph. Clément, G. Da Prato, and J. Prüss. White noise perturbation of the equations of linear parabolic viscoelasticity. Rend. Istit. Mat. Univ. Trieste, 29(1-2):207–220 (1998), 1997.Google Scholar
  42. 42.
    M. Hieber and J. Prüss. Functional calculi for linear operators in vector-valued \(L^p\)-spaces via the transference principle. Adv. Differential Equations, 3(6):847–872, 1998.MathSciNetzbMATHGoogle Scholar
  43. 43.
    D. Bothe and J. Prüss. Dynamics of a core-shell reaction-diffusion system. Comm. Partial Differential Equations, 24(3-4):463–497, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    E. Fašangová and J. Prüss. Evolution equations with dissipation of memory type. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 213–250. Birkhäuser, Basel, 1999.Google Scholar
  45. 45.
    J. Prüss. Evolution problems with nonlocal damping. In Semi-groupes d’opérateurs et calcul fonctionnel (Besançon, 1998), volume 16 of Publ. Math. UFR Sci. Tech. Besançon, pages 113–119. Univ. Franche-Comté, Besançon, 1999.Google Scholar
  46. 46.
    H. Petzeltová and J. Prüss. Global stability of a fractional partial differential equation. J. Integral Equations Appl., 12(3):323–347, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    R. Chill and J. Prüss. Asymptotic behaviour of linear evolutionary integral equations. Integral Equations Operator Theory, 39(2):193–213, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Ph. Clément and J. Prüss. An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces. In Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), volume 215 of Lecture Notes in Pure and Appl. Math., pages 67–87. Dekker, New York, 2001.Google Scholar
  49. 49.
    J. Prüss and R. Schnaubelt. Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl., 256(2):405–430, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    W. Desch, M. Hieber, and J. Prüss. \(L^p\)-theory of the Stokes equation in a half space. J. Evol. Equ., 1(1):115–142, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    E. Fašangová and J. Prüss. Asymptotic behaviour of a semilinear viscoelastic beam model. Arch. Math. (Basel), 77(6):488–497, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    D. Bothe and J. Prüss. Mass transport through charged membranes. In Elliptic and parabolic problems (Rolduc/Gaeta, 2001), pages 332–342. World Sci. Publ., River Edge, NJ, 2002.Google Scholar
  53. 53.
    J. Escher, J. Prüss, and G. Simonett. On the Stefan problem with surface tension. In Elliptic and parabolic problems (Rolduc/Gaeta, 2001), pages 377–388. World Sci. Publ., River Edge, NJ, 2002.Google Scholar
  54. 54.
    J. Prüss. Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in \(L_p\)-spaces. In Proceedings of EQUADIFF, 10 (Prague, 2001), volume 127, pages 311–327, 2002.Google Scholar
  55. 55.
    J. Prüss. Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari, (285):1–39 (2003), 2002.Google Scholar
  56. 56.
    G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an \(L^p\)-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1(2):471–485, 2002.Google Scholar
  57. 57.
    S.-O. Londen, H. Petzeltová, and J. Prüss. Global well-posedness and stability of a partial integro-differential equation with applications to viscoelasticity. J. Evol. Equ., 3(2):169–201, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    J. Escher, J. Prüss, and G. Simonett. Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math., 563:1–52, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Ph. Clément and J. Prüss. Some remarks on maximal regularity of parabolic problems. In Evolution equations: applications to physics, industry, life sciences and economics (Levico Terme, 2000), volume 55 of Progr. Nonlinear Differential Equations Appl., pages 101–111. Birkhäuser, Basel, 2003.Google Scholar
  60. 60.
    R. Denk, M. Hieber, and J. Prüss. Towards an \(L^1\)-theory for vector-valued elliptic boundary value problems. In Evolution equations: applications to physics, industry, life sciences and economics (Levico Terme, 2000), volume 55 of Progr. Nonlinear Differential Equations Appl., pages 141–147. Birkhäuser, Basel, 2003.Google Scholar
  61. 61.
    J. Escher, J. Prüss, and G. Simonett. A new approach to the regularity of solutions for parabolic equations. In Evolution equations, volume 234 of Lecture Notes in Pure and Appl. Math., pages 167–190. Dekker, New York, 2003.Google Scholar
  62. 62.
    R. Denk, G. Dore, M. Hieber, J. Prüss, and A. Venni. New thoughts on old results of R. T. Seeley. Math. Ann., 328(4):545–583, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    J. Prüss and G. Simonett. Maximal regularity for evolution equations in weighted \(L_p\)-spaces. Arch. Math. (Basel), 82(5):415–431, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    G. Metafune, J. Prüss, R. Schnaubelt, and A. Rhandi. \(L^p\)-regularity for elliptic operators with unbounded coefficients. Adv. Differential Equations, 10(10):1131–1164, 2005.Google Scholar
  65. 65.
    D. Bothe, J. Prüss, and G. Simonett. Well-posedness of a two-phase flow with soluble surfactant. In Nonlinear elliptic and parabolic problems, volume 64 of Progr. Nonlinear Differential Equations Appl., pages 37–61. Birkhäuser, Basel, 2005.Google Scholar
  66. 66.
    G. Metafune, D. Pallara, J. Prüss, and R. Schnaubelt. \(L^p\) with singular coefficients. Z. Anal. Anwendungen, 24(3):497–521, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    J. Prüss, L. Pujo-Menjouet, G. Webb, and R. Zacher. Analysis of a model for the dynamics of prions. Discrete Contin. Dyn. Syst. Ser. B, 6(1):225–235, 2006.MathSciNetzbMATHGoogle Scholar
  68. 68.
    J. Prüss, R. Racke, and S. Zheng. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. (4), 185(4):627–648, 2006.Google Scholar
  69. 69.
    J. Prüss and G. Simonett. Operator-valued symbols for elliptic and parabolic problems on wedges. In Partial differential equations and functional analysis, volume 168 of Oper. Theory Adv. Appl., pages 189–208. Birkhäuser, Basel, 2006.Google Scholar
  70. 70.
    J. Prüss and M. Wilke. Maximal \(L_p\)-regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. In Partial differential equations and functional analysis, volume 168 of Oper. Theory Adv. Appl., pages 209–236. Birkhäuser, Basel, 2006.Google Scholar
  71. 71.
    H. Engler, J. Prüss, and G. Webb. Analysis of a model for the dynamics of prions. II. J. Math. Anal. Appl., 324(1):98–117, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    A. Bátkai, K. Engel, J. Prüss, and R. Schnaubelt. Polynomial stability of operator semigroups. Math. Nachr., 279(13-14):1425–1440, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    R. Chill, E. Fašangová, and J. Prüss. Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr., 279(13-14):1448–1462, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Y. Latushkin, J. Prüss, and R. Schnaubelt. Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ., 6(4):537–576, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of elliptic operators on \(L^p(\mathbb{R}^d)\) with unbounded drift coefficients. Houston J. Math., 32(2):563–576, 2006.MathSciNetzbMATHGoogle Scholar
  76. 76.
    J. Prüss, J. Saal, and G. Simonett. Analytic solutions for the classical two-phase Stefan problem. In Proceedings of Equadiff 11, pages 415–425. Comenius University Press, 2007.Google Scholar
  77. 77.
    J. Prüss and G. Simonett. \(H^\infty \)-calculus for the sum of non-commuting operators. Trans. Amer. Math. Soc., 359(8):3549–3565, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    S. Fornaro, G. Metafune, D. Pallara, and J. Prüss. \(L^p\)-theory for some elliptic and parabolic problems with first order degeneracy at the boundary. J. Math. Pures Appl. (9), 87(4):367–393, 2007.Google Scholar
  79. 79.
    J. Prüss, J. Saal, and G. Simonett. Existence of analytic solutions for the classical Stefan problem. Math. Ann., 338(3):703–755, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    R. Denk, M. Hieber, and J. Prüss. Optimal \(L^p\)-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z., 257(1):193–224, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    D. Bothe and J. Prüss. \(L_p\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal., 39(2):379–421, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Y. Latushkin, J. Prüss, and R. Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete Contin. Dyn. Syst. Ser. B, 9(3-4):595–633, 2008.MathSciNetzbMATHGoogle Scholar
  83. 83.
    J. Prüss and G. Simonett. Maximal regularity for degenerate evolution equations with an exponential weight function. In Functional analysis and evolution equations, pages 531–545. Birkhäuser, Basel, 2008.Google Scholar
  84. 84.
    J. Prüss, S. Sperlich, and M. Wilke. An analysis of Asian options. In Functional analysis and evolution equations, pages 547–559. Birkhäuser, Basel, 2008.Google Scholar
  85. 85.
    J. Prüss and G. Simonett. Stability of equilibria for the Stefan problem with surface tension. SIAM J. Math. Anal., 40(2):675–698, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    R. Denk, J. Prüss, and R. Zacher. Maximal \(L_p\)-regularity of parabolic problems with boundary dynamics of relaxation type. J. Funct. Anal., 255(11):3149–3187, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    J. Prüss, R. Schnaubelt, and R. Zacher. Global asymptotic stability of equilibria in models for virus dynamics. Math. Model. Nat. Phenom., 3(7):126–142, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    M. Hieber, L. Lorenzi, J. Prüss, A. Rhandi, and R. Schnaubelt. Global properties of generalized Ornstein-Uhlenbeck operators on \(L^p(\mathbb{R}^N,\mathbb{R}^N)\)with more than linearly growing coefficients. J. Math. Anal. Appl., 350(1):100–121, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    J. Prüss. Decay properties for the solutions of a partial differential equation with memory. Arch. Math. (Basel), 92(2):158–173, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    J. Prüss, G. Simonett, and R. Zacher. On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differential Equations, 246(10):3902–3931, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    F. Alabau-Boussouira, J. Prüss, and R. Zacher. Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels. C. R. Math. Acad. Sci. Paris, 347(5-6):277–282, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    J. Prüss and G. Simonett. Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension. In Nonlocal and abstract parabolic equations and their applications, volume 86 of Banach Center Publ., pages 265–285. Polish Acad. Sci. Inst. Math., Warsaw, 2009.Google Scholar
  93. 93.
    J. Prüss, G. Simonett, and R. Zacher. On normal stability for nonlinear parabolic equations. Discrete Contin. Dyn. Syst., (Dynamical systems, differential equations and applications. 7th AIMS Conference, suppl.):612–621, 2009.Google Scholar
  94. 94.
    J. Prüss, V. Vergara, and R. Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete Contin. Dyn. Syst., 26(2):625–647, 2010.MathSciNetzbMATHGoogle Scholar
  95. 95.
    D. Bothe and J. Prüss. On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid. J. Math. Fluid Mech., 12(1):133–150, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    D. Bothe and J. Prüss. Stability of equilibria for two-phase flows with soluble surfactant. Quart. J. Mech. Appl. Math., 63(2):177–199, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    M. Köhne, J. Prüss, and M. Wilke. On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces. J. Evol. Equ., 10(2):443–463, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    J. Prüss and G. Simonett. On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound., 12(3):311–345, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    J. Prüss and G. Simonett. On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ. Math. J., 59(6):1853–1871, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    J. Prüss and G. Simonett. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity. In Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 507–540. Birkhäuser/Springer Basel AG, Basel, 2011.Google Scholar
  101. 101.
    J. Prüss and M. Wilke. On conserved Penrose-Fife type models. In Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 541–576. Birkhäuser/Springer Basel AG, Basel, 2011.Google Scholar
  102. 102.
    J. Prüss and S. Shimizu. On well-posedness of incompressible two-phase flows with phase transitions: the case of non-equal densities. J. Evol. Equ., 12(4):917–941, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    J. Prüss, Y. Shibata, S. Shimizu, and G. Simonett. On well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Equ. Control Theory, 1(1):171–194, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    J. Prüss, G. Simonett, and R. Zacher. Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal., 207(2):611–667, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    J. Prüss, G. Simonett, and M. Wilke. Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems. Adv. Nonlinear Stud., 13(1):231–243, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    M. Köhne, J. Prüss, and M. Wilke. Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension. Math. Ann., 356(2):737–792, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    D. Bothe, M. Köhne, and J. Prüss. On a class of energy preserving boundary conditions for incompressible Newtonian flows. SIAM J. Math. Anal., 45(6):3768–3822, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    J. Prüss, G. Simonett, and R. Zacher. On the qualitative behaviour of incompressible two-phase flows with phase transitions: the case of equal densities. Interfaces Free Bound., 15(4):405–428, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    J. Prüss, J. Saal, and G. Simonett. Singular limits for the two-phase Stefan problem. Discrete Contin. Dyn. Syst., 33(11-12):5379–5405, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    J. Prüss and G. Simonett. On the manifold of closed hypersurfaces in \(\mathbb{R}^n\)D. Discrete Contin. Dyn. Syst., 33(11-12):5407–5428, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    J. Prüss, S. Shimizu, and M. Wilke. Qualitative behaviour of incompressible two-phase flows with phase transitions: the case of non-equal densities. Comm. Partial Differential Equations, 39(7):1236–1283, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    J. LeCrone, J. Prüss, and M. Wilke. On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces II. J. Evol. Equ., 14(3):509–533, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    J. Prüss, Y. Shao, and G. Simonett. On the regularity of the interface of a thermodynamically consistent two-phase Stefan problem with surface tension. Interfaces Free Bound., 17(4):555–600, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    J. Prüss. Perturbations of exponential dichotomies for hyperbolic evolution equations. In Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, volume 250 of Oper. Theory Adv. Appl., pages 453–461. Birkhäuser/Springer, Cham, 2015.Google Scholar
  115. 115.
    J. Prüss, G. Simonett, and M. Wilke. On thermodynamically consistent Stefan problems with variable surface energy. Arch. Ration. Mech. Anal., 220(2):603–638, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    M. Hieber, M. Nesensohn, J. Prüss, and K. Schade. Dynamics of nematic liquid crystal flows: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(2):397–408, 2016.Google Scholar
  117. 117.
    G. Mola, N. Okazawa, J. Prüss, and T. Yokota. Semigroup-theoretic approach to identification of linear diffusion coefficients. Discrete Contin. Dyn. Syst. Ser. S, 9(3):777–790, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    J. Prüss, S. Shimizu, G. Simonett, and M. Wilke. On incompressible two-phase flows with phase transitions and variable surface tension. In Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 411–442. Birkhäuser/Springer, Basel, 2016.Google Scholar
  119. 119.
    M. Hein and J. Prüss. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations. J. Differential Equations, 261(8):4709–4727, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    J. Prüss and G. Simonett. On the Muskat flow. Evol. Eq. Control Theory, 5(4):631–645, 2016.zbMATHCrossRefGoogle Scholar
  121. 121.
    M. Hieber and J. Prüss. Thermodynamically consistent modeling and analysis of nematic liquid crystal flows. In Mathematical Fluid Dynamics: Present and Future. Springer Proc. Math & Statistics 183, Y. Suzuki, Y. Shibata (eds.), to appear.Google Scholar
  122. 122.
    D. Bothe and Jan Prüss. On the interface formation model for dynamic triple lines. In Mathematical Fluid Dynamics: Present and Future. Springer Proc. Math & Statistics 183, Y. Suzuki, Y. Shibata (eds.), to appear.Google Scholar
  123. 123.
    J. Prüss and S. Shimizu. Qualitative behaviour of incompressible two-phase flows with phase transitions: the isothermal case. J. Math. Sci., to appear.Google Scholar
  124. 124.
    M. Hieber and J. Prüss. Modeling and analysis of nematic liquid crystal flows I. Math. Ann., to appear.Google Scholar
  125. 125.
    M. Herberg, M. Meyries, J. Prüss, and M. Wilke. Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Nonlinear Anal., to appear.Google Scholar
  126. 126.
    D. Bothe and J. Prüss. Modeling and analysis of reactive multi-component two-phase flow with mass transfer and phase transition: the isothermal incompressible case. Discrete Cont. Dyn. Sys. (S), to appear.Google Scholar
  127. 127.
    J. Prüss and M. Wilke. Addendum to the paper: On quasilinear evolution equations in weighted \({L}_p\)-spaces II. J. Evol. Eq., to appear.Google Scholar
  128. 128.
    M. Hieber and J. Prüss. Modeling and analysis of the Ericksen-Leslie equations for nematic liquid crystal flows. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, to appear.Google Scholar
  129. 129.
    J. Prüss and S. Shimizu. Modeling of two-phase flows with and without phase transitions. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, to appear.Google Scholar
  130. 130.
    A. Favini, N. Okazawa, and J. Prüss. Singular perturbation approach to Legendre type operators. Riv. Mat. Univ. Parma, to appear.Google Scholar
  131. 131.
    J. Prüss. On second-order elliptic operators with complete first-order boundary degeneration and strong outward drift. Archiv Math., to appear.Google Scholar
  132. 132.
    J. Prüss. On the Quasi-Geostrophic Equations on Compact Closed Surfaces in \(\mathbb{R}^3\). J. Funct. Anal., to appear.Google Scholar

Engineering Articles

  1. E1.
    H.-J. Warnecke, J. Prüss, and H. Langemann. On a mathematical model of loop reactors I. Chem. Eng. Sci., 40:2321–2326, 1985.CrossRefGoogle Scholar
  2. E2.
    H.-J. Warnecke, J. Prüss, L. Leber, and H. Langemann. On a mathematical model of loop reactors II. Chem. Eng. Sci., 40:2327–2331, 1985.CrossRefGoogle Scholar
  3. E3.
    H.-J. Warnecke, M. Weidenbach, J. Prüss, and H. Langemann. Bestimmung von Dispersionskoeffizienten in gas-flüssig Strahldüsen-Schlaufenreaktoren. Chem. Ing. Technik, 59:496–499, 1987.CrossRefGoogle Scholar
  4. E4.
    H.-J. Warnecke, G. Tamm, and J. Prüss. Absorption von Kohlendioxid in Wasser. Chem. Ing. Technik, 60:401–403, 1988.CrossRefGoogle Scholar
  5. E5.
    J. Prüss and H.-J. Warnecke. A new model for isobutene separation from C4-cuts. In Proc. Conf. Chemeca, pages 594–601, 1988.Google Scholar
  6. E6.
    H.-J. Warnecke, D. Vaupel, J. Prüss, and H. Langemann. Gasphasedispersion in gas-flüssig Strahldüsen-Schlaufenreaktoren. Chem. Ing. Technik, 61, 1989.Google Scholar
  7. E7.
    J. Prüss and H.-J. Warnecke Isobuten-Abtrennung: Experimente und Modellierung. In Dechema-Monographien 118, Katalyse, pages 337–347. 1989.Google Scholar
  8. E8.
    R. Schlott, J. Prüss and G. Mrozynski. Integration of wideband service in time division multiplex systems. Trans. IEEE, 39:256–268, 1991.CrossRefGoogle Scholar
  9. E9.
    H.-J. Warnecke, J. Prüss, B. Bienek, and R.G. Presenti. Modeling isobutene extraction from mixed C4-streams. Chem. Eng. Sci., 47:533–541, 1992.CrossRefGoogle Scholar
  10. E10.
    P. Hußmann, Ch. Kube, J. Prüss, F. Reineke, and H.-J. Warnecke. Oxidation of organic air pol-lutions in an aerosol operated jet loop reactor. In Proc. Fourth World Congress of Chemical Engineering, 1992.Google Scholar
  11. E11.
    M. Lindert, B. Kochbeck, J. Prüss, and H.-J. Warnecke. Scale-up of airlift-loop bioreactors based on modeling the oxygen mass transfer. Chem. Eng. Sci., 47:2281–2286, 1992.CrossRefGoogle Scholar
  12. E12.
    T. Stockhausen, J. Prüss, and H.U. Moritz. An isoperibol calorimeter: A simple apparatus for monitoring polymerization reactions. In Proc. Fourth Int. Workshop on Polymer Reaction Engineering, pages 341–349, 1992.Google Scholar
  13. E13.
    H.-J. Warnecke, J. Prüss, G. Tamm, and M. Brinkmann. Influence of recycling on mass transfer and reaction in a g-l jet loop reactor with variable interfacial area. Chem. Eng. Technol., 16:58–61, 1993.CrossRefGoogle Scholar
  14. E14.
    T. Blume, J. Prüss, and H.-J. Warnecke. Zur Parameterbestimmung bei chemischen Prozessen. Chem. Ing. Technik, 65:914–920, 1993.CrossRefGoogle Scholar
  15. E15.
    M. Brinkmann, J. Prüss, and H.-J. Warnecke. Influence of liquid viscosity on hydrodynamics and mass transfer in a g-l jet loop reactor. In Proc. 3rd German-Japanese symp. bubble columns, pages 141–146, 1994.Google Scholar
  16. E16.
    Ch. Kube, T. Blume, J. Prüss, and H.-J. Warnecke. Chemical absorption of mercaptan in an aerosol operated loop reactor. Can. J. Chem. Eng., 72:1000–1006, 1994.CrossRefGoogle Scholar
  17. E17.
    J. Prüss and R. Schlott. Ergodicity of multiserver queueing systems with various bandwidth allocation techniques. Australian Telecom. Res., 29:13–23, 1995.Google Scholar
  18. E18.
    Ch. Kersting, J. Prüss, and H.-J. Warnecke. Residence time distribution of a screw loop reactor: Experiments and modelling. Chem. Eng. Sci., 50:299–308, 1995.CrossRefGoogle Scholar
  19. E19.
    H.-J. Warnecke, J. Prüss, W. Hübinger, and R. Minges. Modellierung des Stoffaustausches von flüchtigen organischen Verbindungen in hochviskosen Medien. Chemie Ingenieur Technik, 5:570–577, 1995.CrossRefGoogle Scholar
  20. E20.
    H. Güldener, J.G. Duffy, M. Weidenbach, J. Prüss, and H.-J. Warnecke. Cooling of extruder strands - experiments and modelling. Plastics, Rubber and Composites Processing and Application, 23:305–310, 1995.Google Scholar
  21. E21.
    M. Brinkmann, H.-J. Warnecke, and J. Prüss. Modellierung reaktiver Stoffaustauschprozesse. Chemie Ingenieur Technik, 68:239–253, 1996.CrossRefGoogle Scholar
  22. E22.
    D. Meier, H.-J. Warnecke, and J. Prüss. Modeling of mass transfer of volatile organic compounds in highly viscous media. The Chem. Eng. J., 67:45–53, 1997.CrossRefGoogle Scholar
  23. E23.
    A. Ludwig, U. Flechtner, J. Prüss, and H.-J. Warnecke. Formation of emulsions in a screw loop reactor. Chem. Eng. Technol., 20:149–161, 1997.CrossRefGoogle Scholar
  24. E24.
    J. Prüss, M. Schäfer, and H.-J. Warnecke. Influence of hydrodynamics on modelling absorption processes with fast chemical reaction. In Proc. 3rd Japanese/German symp. bubble columns, 1997.Google Scholar
  25. E25.
    Z. Chen, J. Prüss, D. Meier, and H.-J. Warnecke. Modelling and simulation of extraction of oligomer from granular polymer. The Chem. Eng. J., 68:165–172, 1997.CrossRefGoogle Scholar
  26. E26.
    M. Brinkmann, M. Schäfer, H.-J. Warnecke, and J. Prüss. Modelling reactive absorption processes via film-renewal theory: Numerical schemes and simulation results. Computers & Chem. Eng., 22:515–524, 1998.CrossRefGoogle Scholar
  27. E27.
    Z. Chen, J. Prüss, and H.-J. Warnecke. A population balance model for disperse systems. Part I: Drop size distribution in emulsions. Chem. Eng. Sci., 53:1059–1066, 1998.CrossRefGoogle Scholar
  28. E28.
    M. Wiebe, J. Kümmel, J. Prüss, and H.-J. Warnecke. Kontinuierliche Epoxidation von Sojaöl: Prozessanalyse und Verfahrensentwicklung. Fett/Lipid, 100:404–411, 1998.CrossRefGoogle Scholar
  29. E29.
    O. Decreßin, K. Forell, J. Prüss, and H.-J. Warnecke. Modellierung und Validierung eines styrolabbauenden Biofilters. Chem. Ing. Technik, 71:619–624, 1999.CrossRefGoogle Scholar
  30. E30.
    Z. Chen, W. Pauer, H.U. Moritz, J. Prüss, and H.-J. Warnecke. A population balance model for disperse systems: Particle size distribution in suspension polymerization. Chin. J. Chem. Eng., 7:332–344, 1999.Google Scholar
  31. E31.
    H.-J. Warnecke, M. Schäfer, J. Prüss, and M. Weidenbach. A concept to simulate an industrial size tube reactor with fast complex kinetics and absorbtion of two gases on the basis of CFD-modelling. Chem. Eng. Sci., 54:2513–2519, 1999.CrossRefGoogle Scholar
  32. E32.
    Z. Chen, W. Pauer, H.U. Moritz, J. Prüss, and H.-J. Warnecke. Modeling of the suspension polymerization process using a particle population balance. Chem. Eng. Technol., 22:609–616, 1999.CrossRefGoogle Scholar
  33. E33.
    M. Motzigemba, D. Bothe, H.C. Broecker, J. Prüss, and H.-J. Warnecke. A contribution to simulation of mixing in screw extruders employing commercial CFD-software. In Proc. 10th European Conf. on Mixing, 297-304, 2000.Google Scholar
  34. E34 .
    I. Hilker, D. Bothe, J. Prüss, and H.-J. Warnecke. Chemo-enzymatic epoxidation of unsaturated plant oils. Chem. Eng. Sci., 56:427–432, 2001.CrossRefGoogle Scholar
  35. E35.
    D. Bothe, G. Koschut, J. Prüss, and H.-J. Warnecke. Instationary shrinking-core model for heterogeneous ionic reactions. Chem. Eng. Technol., 24:809–814, 2001.CrossRefGoogle Scholar
  36. E36.
    O. Reipschläger, D. Bothe, H.C. Broecker, B. Monien, J. Prüss, H.-J. Warnecke, B. Weigand, and K. Wielage. Modellierung und Simulation zur Optimierung des Zerstäubungsprozesses im Ultraschall-Stehwellenfeld. In Frontiers in Simulation, eds. K. Panreck, F. Dörrscheidt, ASIM Forschungsberichte Simulation. SCS Publishing House Erlangen, 2001.Google Scholar
  37. E37.
    M. Koebe, D. Bothe, J. Prüss, and H.-J. Warnecke. 3D-Direct Numerical Simulation of air bubbles in water at high Reynolds numbers. In Proc. 2002-ASME Joint U.S.-European Fluids Eng. Conf., 2002.Google Scholar
  38. E38.
    M. Motzigemba, N. Roth, D. Bothe, H.-J. Warnecke, J. Prüss, K. Wielage, and B. Weigand. The effect of non-Newtonian flow behaviour on binary droplet collisions: VOF-simulations and experimental analysis. In Proc. 18th annual conf. liquid atomization and spray systems (A. Lozano ed.), pages 559–564, 2002.Google Scholar
  39. E39.
    O. Reipschläger, D. Bothe, B. Monien, J. Prüss, B. Weigand, and H.-J. Warnecke. Modelling and simulation of the desintegration process in ultrasonic standing wave atomizers. In Proc. 18th Annual Conf. Liquid Atomization and Spray Systems (A. Lozano ed.), pages 449–454, 2002.Google Scholar
  40. E40.
    D. Bothe, M. Koebe, J. Prüss, H.-J. Warnecke, and K. Wielage. Direct numerical simulation of mass transfer between rising gas bubbles and water. In Bubble flows: Analysis, Modelling and Calculation (M. Sommerfeld ed.), Heat and Mass Transfer, pages 159–174. Springer, 2004.Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Dieter Bothe
    • 1
  • Robert Denk
    • 2
  • Matthias Hieber
    • 3
  • Roland Schnaubelt
    • 4
  • Gieri Simonett
    • 5
  • Mathias Wilke
    • 6
  • Rico Zacher
    • 7
    Email author
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Fachbereich für Mathematik und StatistikUniversität KonstanzKonstanzGermany
  3. 3.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Department of MathematicsKarlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Department of MathematicsVanderbilt UniversityNashvilleUSA
  6. 6.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  7. 7.Institut für Angewandte AnalysisUniversität UlmUlmGermany

Personalised recommendations