Journal of Evolution Equations

, Volume 16, Issue 3, pp 705–722 | Cite as

On the low Mach number limit of compressible flows in exterior moving domains

  • Eduard Feireisl
  • Ondřej Kreml
  • Václav Mácha
  • Šárka Nečasová
Article

Abstract

We study the incompressible limit of solutions to the compressible barotropic Navier–Stokes system in the exterior of a bounded domain undergoing a simple translation. The problem is reformulated using a change of coordinates to fixed exterior domain. Using the spectral analysis of the wave propagator, the dispersion of acoustic waves is proved by means of the RAGE theorem. The solution to the incompressible Navier–Stokes equations is identified as a limit.

Keywords

Compressible Navier–Stokes system Incompressible limit Moving domain Exterior domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Baalent, G., Wittwer, P.: Time periodic solutions of the Navier–Stokes equations with nonzero constant boundary conditions at infinity. SIAM J. Math. Anal. 43 (2011), 4:1787–1809Google Scholar
  2. 2.
    Bogovskii, M.E.: Solution of some vector analysis problems connected with operators div and grad. (in Russian) Trudy Sem. S.L. Sobolev, 80 (1980):5–40Google Scholar
  3. 3.
    Cycon, H.L., Froese, R.G., Kirschi, W., Simon, G: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer (1987)Google Scholar
  4. 4.
    Danchin R.: Low Mach number limit for viscous compressible flows. M2AN Math. Model Numer. Anal. 39, 459–475 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Desjardins B., Grenier E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Desjardins B., Grenier E., Lions P.-L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Feireisl E.: Flows of viscous compressible fluids under strong stratification: incompressible limits for long-range potential forces. Mathematical Models and Methods in Applied Sciences 21, 7–27 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feireisl E., Karper T., Kreml O., Stebel J.: Stability with respect to domain of the low Mach number limit of compressible viscous fluids. Mathematical Models and Methods in Applied Sciences 23, 2465–2493 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feireisl, E., Kreml, O., Nečasová, Š., Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier–Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254 (2013), no. 1, 125–140Google Scholar
  10. 10.
    Feireisl, E., Kreml, O., Nečasová, Š., Neustupa, J., Stebel, J.: Incompressible limits of fluids excited by moving boundaries. SIAM J. Math. Anal. 46 (2014), No. 2, 1456–1471Google Scholar
  11. 11.
    Feireisl E., Novotný A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhaüser, Berlin (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Fujita H., Sauer N.: On existence of weak solutions of the Navier–Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 17, 403–420 (1970)MathSciNetMATHGoogle Scholar
  13. 13.
    Galdi G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, I. Springer, New York (1994)MATHGoogle Scholar
  14. 14.
    Lighthill J.: On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London A 211, 564–587 (1952)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lighthill J.: On sound generated aerodynamically II. General theory. Proc. of the Royal Society of London A 222, 1–32 (1954)MathSciNetMATHGoogle Scholar
  16. 16.
    Lions P.-L.: Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford (1998)MATHGoogle Scholar
  17. 17.
    Lions P.-L., Masmoudi N.: Incompressible Limit for a Viscous Compressible Fluid. J. Math. Pures Appl. 77, 585–627 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Masmoudi, N.: Examples of singular limits in hydrodynamics In Handbook of Differential Equations, III, C. Dafermos, E. Feireisl Eds., Elsevier, Amsterdam (2006)Google Scholar
  19. 19.
    Neustupa, J., Penel, P.: A Weak Solution to the Navier–Stokes System with Navier’s Boundary Condition in a Time-Varying Domain In Recent Developments of Mathematical Fluid Mechanics, eds. Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M., Springer, Basel (2016).Google Scholar
  20. 20.
    Reed, M., Simon, B.: Methods of modern mathematical physics. III. Scattering theory. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.Google Scholar
  21. 21.
    Schochet S.: The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal. 39, 441–458 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sýkora, P.: Compressible fluid motion in time dependent domains. Diploma Thesis, Charles University (2012)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Eduard Feireisl
    • 1
  • Ondřej Kreml
    • 1
  • Václav Mácha
    • 1
  • Šárka Nečasová
    • 1
  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations