Journal of Evolution Equations

, Volume 14, Issue 4–5, pp 841–862 | Cite as

Delay equation formulation of a cyclin-structured cell population model

  • Ricardo Borges
  • Àngel Calsina
  • Sílvia Cuadrado
  • Odo Diekmann


The aim of this paper is to derive a system of two renewal equations from individual-level assumptions concerning a cyclin-structured cell population. Nonlinearity arises from the assumption that the rate at which quiescent cells become proliferating is determined by feedback. In fact, we assume that this rate is a nonlinear function of a weighted population size. We characterize steady states and establish the validity of the principle of linearized stability.

Mathematics Subject Classification

45D05 47D06 92D25 92C37 


Delay equations Structured cell population Initial value problem Steady states Linearized stability principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell G.I., Anderson E.C. (1967) Cell growth and division. A mathematical model with applications to cell volume distributions in mammalian suspension culture. Biophys. J. 7: 329–351CrossRefGoogle Scholar
  2. 2.
    Bekkal Brikci F., Clairambault J., Ribba B., Perthame B. (2008) An age-and-cyclin-structured cell population model with proliferation and quiescence. J. Math. Biol. 57(1): 91–110CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    F. Bekkal Brikci, J. Clairambault, B. Perthame (2008) Analysis of a molecular structured population model with possible polinomial growth for the cell division cycle. Math. Comput. Model. 47(7–8):699–713.Google Scholar
  4. 4.
    R. Borges, À. Calsina, S. Cuadrado (2009) Equilibria of a cyclin structured cell population model. Discrete Contin. Dyn. Syst. Ser. B 11:613–627.Google Scholar
  5. 5.
    R. Borges, À. Calsina, S. Cuadrado (2011) Oscillations in a molecular structured cell population model. Nonlinear Anal. Real World Appl. 12(4):1911–1922.Google Scholar
  6. 6.
    P. L. Butzer, H. Berens (1967) Semi-Groups of Operators and Approximation, Springer, Berlin, Heidelberg, New York.Google Scholar
  7. 7.
    A. M. de Roos, O. Diekmann, P. Getto, M.A. Kirkilionis (2010) Numerical equilibrium analysis for structured consumer resource models. Bull. Math. Biol. 72 no. 2:259–297.Google Scholar
  8. 8.
    O. Diekmann, M. Gyllenberg, J.A.J. Metz, S. Nakaoka and A.M. de Roos (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61 no. 2:277–318.Google Scholar
  9. 9.
    O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther (1995) Delay Equations: Functional, Complex and Nonlinear Analysis, Springer, Berlin, Heidelberg, New York.Google Scholar
  10. 10.
    O. Diekmann, P. Getto, M. Gyllenberg (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J. Math. Anal. 39(4):1023–1069.Google Scholar
  11. 11.
    O. Diekmann, M. Gyllenberg (2008) Abstract delay equations inspired by population dynamics. In Functional analysis and evolution equations. Amann, H., Arendt, W., Hieber, M., Neubrander, F., Nicaise, S. and von Below, J. (Eds.) Birkhauser, Basel, 187–200.Google Scholar
  12. 12.
    O. Diekmann, M. Gyllenberg, H. Thieme, S. Verduyn Lunel (1993) A cell-cycle model revisited. CWI Report AM-R9305.Google Scholar
  13. 13.
    O. Diekmann, M. Gyllenberg (2012) Equations with infinite delay: blending the abstract and the concrete. J. Differential Equations 252(2):819–851.Google Scholar
  14. 14.
    G. Greiner, J.M.A.M. van Neerven (1992) Adjoints of semigroups acting on vector valued function spaces. Israel Journal of Mathematics 77:305–333.Google Scholar
  15. 15.
    G. Gripenberg, S.O. Londen, O. Staffans (1990) Volterra integral and functional equations. Cambridge University Press.Google Scholar
  16. 16.
    M. Gyllenberg, G. Webb (1987) Age-size structure in populations with quiescence. Math. Biosci. 86:67–95.Google Scholar
  17. 17.
    M. Gyllenberg, G. Webb (1990) A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28:671–694.Google Scholar
  18. 18.
    E. Hille, R.S. Phillips (1957) Functional analysis and semigroups. Providence, R.I.: AM. Math. Soc.Google Scholar
  19. 19.
    J. van Neerven (1992)The adjoint of a semigroup of linear operators Lecture Notes in Mathematics, 1529. Springer-Verlag, Berlin.Google Scholar
  20. 20.
    J. Prüss (1981) Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11 no. 1:65–84.Google Scholar
  21. 21.
    W.M. Ruess (2008) Linearized stability and regularity for nonlinear age-dependent population models. Functional analysis and evolution equations, Amann, H., Arendt, W., Hieber, M., Neubrander, F., Nicaise, S. and von Below, J. (Eds.) Birkhauser, Basel 561–576.Google Scholar
  22. 22.
    Sinko J.W., Streifer W. (1971) A model for populations reproducing by fission. Ecology 52: 330–335CrossRefGoogle Scholar
  23. 23.
    H. Von Foerster (1959) Some remarks on changing populations. The Kinetics of Cellular Proliferation, 382–407, (Frederick Stohlman, ed.), Grune and Stratton, New York.Google Scholar
  24. 24.
    G.F. Webb (1985) Theory of nonlinear age-dependent population dynamics. Monographs and Textbooks in Pure and Applied Mathematics, 89. Marcel Dekker, Inc., New York.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Ricardo Borges
    • 1
  • Àngel Calsina
    • 1
  • Sílvia Cuadrado
    • 1
  • Odo Diekmann
    • 2
  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Department of MathematicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations