Journal of Evolution Equations

, Volume 13, Issue 1, pp 163–195 | Cite as

Global estimates for nonlinear parabolic equations

  • Paolo Baroni
  • Agnese Di Castro
  • Giampiero Palatucci


We consider nonlinear parabolic equations of the type
$$u_t - {\rm div}a(x, t, Du)= f(x, t) \quad {\rm on}\quad \Omega_T =\Omega\times (-T,0),$$
under standard growth conditions on a, with f only assumed to be integrable. We prove general decay estimates up to the boundary for level sets of the solutions u and the gradient Du which imply very general estimates in Lebesgue and Lorentz spaces. Assuming only that the involved domains satisfy a mild exterior capacity density condition, we provide global regularity results.

Mathematics Subject Classification (2000)

35K55 35B65 35K10 46E30 


Nonlinear parabolic problems Calderón-Zygmund theory Lorentz regularity Rearrangement invariant function spaces Higher integrability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Acerbi, G. Mingione: Gradient estimates for a class of parabolic systems. Duke Math. J. 136 (2007), no. 2, 285–320.Google Scholar
  2. 2.
    Adams D. R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arkhipova A.A.: L p-estimates of the gradients of solutions of initial/boundary-value problems for quasilinear parabolic systems. Differential and pseudodifferential operators. J. Math. Sci. 73((6), 609–617 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baroni P., Habermann J.: Calderón-Zygmund estimates for parabolic measure data equations. J. Differential Equations 252, 412–447 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Baroni P., Habermann J.: New gradient estimates for parabolic equations. Houston J. Math. 38, 855–914 (2012)MathSciNetGoogle Scholar
  6. 6.
    P. Baroni: Marcinkiewicz estimates for degenerate parabolic equations with measure data. In preparation.Google Scholar
  7. 7.
    D. Blanchard, F. Murat: Renormalised solutions of nonlinear parabolic problems with L 1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 6, 1137–1152.Google Scholar
  8. 8.
    Boccardo L., Dall’Aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bögelein V., Duzaar F., Mingione G.: The boundary regularity of non-linear parabolic systems II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27, 145–200 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Caffarelli L., Peral I.: On W 1, p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51, 1–21 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dall’Aglio A.: Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations.. Ann. Mat. Pura Appl. (IV), 170, 207–240 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. Di Castro, G. Palatucci: Measure data problems, lower order terms and interpolation effects. Ann. Mat. Pura Appl. doi: 10.1007/s10231-012-0277-7
  14. 14.
    Di Castro A., Palatucci G.: Nonlinear parabolic problems with lower order terms and related integral estimates. Nonlinear Anal. 75, 4177–4197 (2012)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    A. Di Castro, G. Palatucci: Fractional regularity for nonlinear elliptic problems with measure data. J. Convex Anal., 20 (2013), no. 3.Google Scholar
  16. 16.
    J. Droniou, A. Porretta, A. Prignet: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19 (2003), no. 2, 99–161.Google Scholar
  17. 17.
    Duzaar F., Mingione G.: Gradient estimates via non-linear potentials. Amer. J. Math., 133, 1093–1149 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Giaquinta M., Struwe M.: On the partial regularity of weak solutions of nonlinear parabolic systems. Math. Z. 179, 437–451 (1982)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    E. Giusti: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003.Google Scholar
  20. 20.
    L. Grafakos: Classical and Modern Fourier Analysis. Pearson Edu. Inc., Upper Saddle River, 2004.Google Scholar
  21. 21.
    Heinonen J., Kilpeläinen T., Martio O.: Nonlinear potential theory of degenerate elliptic equations. Oxford University Press, Oxford (1993)MATHGoogle Scholar
  22. 22.
    F. Hélein, J. Wood: Harmonic maps, in: Handbook of Global Analysis, vol. 1213, Elsevier Sci. B.V., Amsterdam, 2008, 417–491.Google Scholar
  23. 23.
    T. Kilpeläinen, P. Koskela: Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal. 23 (1994), no. 7, 899–909.Google Scholar
  24. 24.
    Kinnunen J., Lewis J.L.: Higher integrability for parabolic systems of p-Laplacian type. Duke Math. J. 102, 253–271 (2000)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kuusi T., Mingione G.: Nonlinear potential estimates in parabolic problems. Rend. Lincei, Mat. e Appl. 22, 161–174 (2011)MathSciNetMATHGoogle Scholar
  26. 26.
    T. Kuusi, G. Mingione: Gradient regularity for nonlinear parabolic equations. Ann. Scu. Norm. Sup. Cl. Sci. (5), to appear.Google Scholar
  27. 27.
    T. Kuusi, G. Mingione: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS), to appear.Google Scholar
  28. 28.
    Lewis J. L.: Uniformly fat sets. Trans. Amer. Math. Soc. 308, 177–196 (1988)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lieberman G. M.: Second order parabolic differential equations. World Scientific Press, River Edge (1996)MATHCrossRefGoogle Scholar
  30. 30.
    Mikkonen P.: On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad. Sci. Fenn., Ser AI, Math. Dissert. 104, 1–71 (1996)Google Scholar
  31. 31.
    Mingione G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, 195–261 (2007)MathSciNetMATHGoogle Scholar
  32. 32.
    Mingione G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Mingione G.: Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13, 459–486 (2011)MathSciNetMATHGoogle Scholar
  34. 34.
    Mingione G.: Nonlinear measure data problems. Milan J. Math. 79, 429–496 (2011)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    G. Mingione (ed.): Topics in modern regularity theory. CRM Series 13, Edizioni della Normale, Pisa (2012).Google Scholar
  36. 36.
    Nikkta R.: Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differential Equations 251, 860–880 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Parviainen M.: Global gradient estimates for degenerate parabolic equations in nonsmooth domains. Ann. Mat. Pura Appl. (4) 188, 333–358 (2009)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Petitta F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura Appl. (4) 187, 563–604 (2008)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    F. Petitta, A. Ponce, A. Porretta: Diffuse measures and nonlinear parabolic equations, J. Evol. Equations 11 (2011), no. 4, 861–905.Google Scholar
  40. 40.
    N. C. Phuc: Global integral gradient bounds for quasilinear equations below or near the natural exponent. Ark. Mat., to appear.Google Scholar
  41. 41.
    Rivière T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168, 1–22 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Paolo Baroni
    • 1
  • Agnese Di Castro
    • 2
  • Giampiero Palatucci
    • 2
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di ParmaParmaItaly

Personalised recommendations