Journal of Evolution Equations

, Volume 13, Issue 1, pp 69–87

Self-similar asymptotics of solutions to heat equation with inverse square potential

Open Access
Article

Abstract

We show that the large-time behavior of solutions to the Cauchy problem for the linear heat equation with the inverse square potential is described by explicit self-similar solutions.

Keywords

Heat equation singular potential self-similar solutions large-time asymptotics 

Mathematics Subject Classification (2000)

35K05 35K15 35B05 35B40 

References

  1. 1.
    Baras P., Goldstein J.A.: The heat equation with a singular potential. Trans. Am. Math. Soc. 284, 121–139 (1984)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chiarenza F.M., Serapioni R.P.: A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova 73, 179–190 (1985)MathSciNetMATHGoogle Scholar
  3. 3.
    Dziubański J., Hulanicki A.: On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups. Studia Math. 94, 81–95 (1989)MathSciNetMATHGoogle Scholar
  4. 4.
    Duoandikoetxea J., Zuazua E.: Moments, masses de Dirac et décomposition de fonctions. C. R. Acad. Sci. Paris, Sér. I 315, 693–698 (1992)MathSciNetMATHGoogle Scholar
  5. 5.
    L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence 19, (1998).Google Scholar
  6. 6.
    M.-H. Giga, Y. Giga, J. Saal, Progress in Nonlinear Differential Equations and Their Applications: asymptotic behavior of solutions and self-similar solutions, Boston [etc.], Birkhäuser, vol. 79.Google Scholar
  7. 7.
    Goldstein J.A., Kombe I.: Instantaneous blow up. Contemp. Math. 327, 141–149 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liskevich V., Sobol Z.: Estimates of integral kernels for semigroups associated with second order elliptic operators with singular coefficients. Potential Anal. 18, 359–390 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Milman P.D., Yu. A.: Semenov, Global heat kernel bounds via desingularizing weights. J. Funct. Analysis 212, 373–398 (2004)CrossRefGoogle Scholar
  10. 10.
    Moschini L., Tesei A.: Parabolic Harnack inequality for the heat equation with inverse–square potential, Forum Math. 19, 407–427 (2007)Google Scholar
  11. 11.
    E. M. Ouhabaz, Analysis of heat equation on domains, Princeton University Press, 2004.Google Scholar
  12. 12.
    Simon B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N. S.) 7, 447–526 (1982)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Vázquez J.L., Zuazua E.: The Hardy inequality and the asymptotic behavior of the heat equation with an inverse–square potential. J. Funct. Anal. 173, 103–153 (2000)MATHGoogle Scholar
  14. 14.
    Zhang Qi S.: Global bounds of Schrödinger heat kernels with negative potentials. J. Funct. Anal. 182, 344–370 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zhang Qi S.: Global lower bound for the heat kernel of \({-\Delta + \frac{c}{|x|^2}}\). Proc. Am. Math. Soc. 129, 1105–1112 (2000)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Instytut MatematycznyUniwersytet WrocławskiWrocławPoland

Personalised recommendations