Advertisement

Journal of Evolution Equations

, Volume 11, Issue 1, pp 215–237 | Cite as

The Schrödinger equation on cylinders and the n-torus

  • R. S. Kraußhar
  • N. VieiraEmail author
Article

Abstract

In this paper, we study the solutions to the Schrödinger equation on some conformally flat cylinders and on the n-torus. First, we apply an appropriate regularization procedure. Using the Clifford algebra calculus with an appropriate Witt basis, the solutions can be expressed as multiperiodic eigensolutions to the regularized parabolic-type Dirac operator. We study their fundamental properties, give representation formulas of all these solutions in terms of multiperiodic generalizations of the elliptic functions in the context of the regularized parabolic-type Dirac operator. Furthermore, we also develop some integral representation formulas. In particular, we set up a Green type integral formula for the solutions to the homogeneous regularized Schrödinger equation on cylinders and n-tori. Then, we treat the inhomogeneous Schrödinger equation with prescribed boundary conditions in Lipschitz domains on these manifolds. We present an L p -decomposition where one of the components is the kernel of the first-order differential operator that factorizes the cylindrical (resp. toroidal) Schrödinger operator. Finally, we study the behavior of our results in the limit case where the regularization parameter tends to zero.

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 35J10 35C15 

Keywords

Schrödinger equation on manifolds Regularized parabolic-type Dirac operators Hypoelliptic equations Regularization Hodge decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artino, R., Barros-Neto, J.: Hypoelliptic Boundary-Value Problems, Lectures Notes in Pure and Applied Mathematics 53, Marcel Dekker: New York; (1980).Google Scholar
  2. 2.
    Cerejeiras P., Vieira N.: Regularization of the non-stationary Schrödinger operator. Math. Meth. in Appl. Sc. 32(4), 535–555 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cerejeiras P., Kähler U., Sommen F.: Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains. Math. Meth. in the Appl. Sc. 28, 1715–1724 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cerejeiras P., Kähler U.: Elliptic Boundary Value Problems of Fluid Dynamics over Unbounded Domains. Math. Meth. in Appl. Sc. 23, 81–101 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Delanghe, R., Sommen, F., Souçek, V., Clifford algebras and spinor-valued functions, Kluwer Academic Publishers, 1992.Google Scholar
  6. 6.
    Dix, D.: D., Application of Clifford analysis to inverse scattering for the linear hierarchy in several space dimensions, In: Ryan, J. (ed.), pp. 260–282, CRC Press, Boca Raton, FL (1995).Google Scholar
  7. 7.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford calculus for physicists and engineers, John Wiley and Sons, (1997).Google Scholar
  8. 8.
    Kraußhar R.S., Ryan J.: Some Conformally Flat Spin Manifolds, Dirac Operators and Automorphic Forms. Journal of Mathematical Analysis and its Applications 325(1), 359–376 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kraußhar R.S., Ryan J.: Clifford and harmonic analysis on cylinders and tori. Revista Matematica Iberoamericana 21, 87–110 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kraußhar, R.S.: Generalized Analytic Automorphic Forms in Hypercomplex Spaces, Frontiers in Mathematics, Birkhäuser, Basel, (2004).Google Scholar
  11. 11.
    Kravchenko V.G., Kravchenko V.V.: Quaternionic Factorization of the Schrödinger operator and its applications to some first-order systems of mathematical physics. J. Phys. A: Math. Gen. 36(44), 11285–11297 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Shapiro, M., Kravchenko, V.V.: Integral Representation for spatial models of mathematical physics, Pitman research notes in mathematics series 351, Harlow, Longman, (1996).Google Scholar
  13. 13.
    Tao, T.: Nonlinear Dispersive Equations, Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, American Mathematical Society: Providence, RI, (2006).Google Scholar
  14. 14.
    Velo, V.: Mathematical Aspects of the nonlinear Schrödinger Equation, Proceedings of the Euroconference on nonlinear Klein-Gordon and Schrödinger systems: theory and applications, Vázquez, Luis et al.(ed.), pp. 39–67 World Scientific, Singapore (1996).Google Scholar
  15. 15.
    Vieira, N.: Theory of the parabolic Dirac operator and its applications to non-linear differential equations, PhD Thesis, Univerity of Aveiro, (2009).Google Scholar
  16. 16.
    Vieira N.: Powers of the parabolic Dirac operator. Adv. Appl. Clifford Algebr. 18, 1023–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Mathematic, Faculty of ScienceUniversity of PortoPortoPortugal

Personalised recommendations