Journal of Evolution Equations

, Volume 9, Issue 2, pp 371–404 | Cite as

On the 3D Cahn–Hilliard equation with inertial term

  • Maurizio GrasselliEmail author
  • Giulio Schimperna
  • Antonio Segatti
  • Sergey Zelik


We study the modified Cahn–Hilliard equation proposed by Galenko et al. in order to account for rapid spinodal decomposition in certain glasses. This equation contains, as additional term, the second-order time derivative of the (relative) concentration multiplied by a (small) positive coefficient \({\varepsilon}\) . Thus, in absence of viscosity effects, we are in presence of a Petrovsky type equation and the solutions do not regularize in finite time. Many results are known in one spatial dimension. However, even in two spatial dimensions, the problem of finding a unique solution satisfying given initial and boundary conditions is far from being trivial. A fairly complete analysis of the 2D case has been recently carried out by Grasselli, Schimperna and Zelik. The 3D case is still rather poorly understood but for the existence of energy bounded solutions. Taking advantage of this fact, Segatti has investigated the asymptotic behavior of a generalized dynamical system which can be associated with the equation. Here we take a step further by establishing the existence and uniqueness of a global weak solution, provided that \({\varepsilon}\) is small enough. More precisely, we show that there exists \({\varepsilon_0 > 0}\) such that well-posedness holds if (suitable) norms of the initial data are bounded by a positive function of \({\varepsilon\in (0,\varepsilon_0)}\) which goes to + ∞ as \({\varepsilon}\) tends to 0. This result allows us to construct a semigroup \({S_\varepsilon(t)}\) on an appropriate (bounded) phase space and, besides, to prove the existence of a global attractor. Finally, we show a regularity result for the attractor by using a decomposition method and we discuss the existence of an exponential attractor.

Mathematics Subject Classification (2000)

35B40 35B41 82C26 


Cahn–Hilliard equation Weak solutions Global existence Global attractors Exponential attractors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babin A., Vishik M.I.: Maximal attractors of semigroups corresponding to evolutionary differential equations. Mat. Sb., 126, 397–419 (1984)MathSciNetGoogle Scholar
  2. 2.
    Ball J.M.: Global attractors for damped semilinear wave equations. Partial differential equations and applications. Discrete Contin. Dyn. Syst., 10, 31–52 (2004)zbMATHGoogle Scholar
  3. 3.
    Brézis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal., 4, 677–681 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cahn J.W.: On spinodal decomposition. Acta Metall., 9, 795–801 (1961)CrossRefGoogle Scholar
  5. 5.
    Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28, 258–267 (1958)CrossRefGoogle Scholar
  6. 6.
    M. Conti and G. Mola, 3-D viscous Cahn–Hilliard with memory, Math. Methods Appl. Sci., (2008), doi: 10.1002/mma.1091.
  7. 7.
    Debussche A.: A singular perturbation of the Cahn–Hilliard equation. Asymptotic Anal., 4, 161–185 (1991)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Efendiev M., Miranville A., Zelik S.: Exponential attractors for a singularly perturbed Cahn–Hilliard system. Math. Nachr., 272, 11–31 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Elliott C.M., Zheng S.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal., 96, 339–357 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Fabrie, C. Galusinski, A. Miranville, and A. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, in “Partial differential equations and applications”, Discrete Contin. Dyn. Syst., 10 (2004), 211–238.Google Scholar
  11. 11.
    Galenko P., Jou D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E, 71, 046125 (2005) (13 pages)CrossRefGoogle Scholar
  12. 12.
    Galenko P., Lebedev V.: Analysis of the dispersion relation in spinodal decomposition of a binary system. Philos. Mag. Lett., 87, 821–827 (2007)CrossRefGoogle Scholar
  13. 13.
    Galenko P., Lebedev V.: Local nonequilibrium effect on spinodal decomposition in a binary system. Int. J. Thermodyn., 11, 21–28 (2008)Google Scholar
  14. 14.
    Galenko P., Lebedev V.: Nonequilibrium effects in spinodal decomposition of a binary system. Phys. Lett. A 372, 985–989 (2008)CrossRefGoogle Scholar
  15. 15.
    Gatti S., Grasselli M., Miranville A., Pata V.: On the hyperbolic relaxation of the one- dimensional Cahn–Hilliard equation. J. Math. Anal. Appl. 312, 230–247 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gatti S., Grasselli M., Miranville A., Pata V.: Hyperbolic relaxation of the viscous Cahn–Hilliard equation in 3-D. Math. Models Methods Appl. Sci. 15, 165–198 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Gatti, M. Grasselli, A. Miranville, and V. Pata, Memory relaxation of the one-dimensional Cahn–Hilliard equation, Dissipative phase transitions, 101–114, Ser. Adv. Math. Appl. Sci., 71, World Sci. Publ., Hackensack, NJ, 2006.Google Scholar
  18. 18.
    Grant C.P.: Spinodal decomposition for the Cahn–Hilliard equation. Comm. Partial Differential Equations 18, 453–490 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Grasselli M., Miranville A., Pata V., Zelik S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potential. Math. Nachr. 280, 1475–1509 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Grasselli M., Schimperna G., Zelik S.: On the 2D Cahn–Hilliard equation with inertial term. Comm. Partial Differential Equation 34, 137–170 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kania M.B.: Global attractor for the perturbed viscous Cahn–Hilliard equation. Colloq. Math. 109, 217–229 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kenmochi N., Niezgódka M., Pawłow I.: Subdifferential operator approach to the Cahn–Hilliard equation with constraint. J. Differential Equations 117, 320–356 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Maier-Paape S., Wanner T.: Spinodal decomposition for the Cahn–Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151, 187–219 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Miranville A., Zelik S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Novick-Cohen A., Segel L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10, 277–298 (1984)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Novick-Cohen A.: The Cahn–Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Novick-Cohen A.: On Cahn–Hilliard type equations. Nonlinear Anal. 15, 797–814 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Nicolaenko B., Scheurer B., Temam R.: Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14, 245–297 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pata V., Prouse G., Vishik M.I.: Traveling waves of dissipative nonautonomous hyperbolic equations in a strip. Adv. Differential Equations 3, 249–270 (1998)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Pata V., Zelik S.: A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal. 6, 481–486 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn–Hilliard equation. Comm. Partial Differential Equations 24, 1055–1077 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Segatti A.: On the hyperbolic relaxation of the Cahn–Hilliard equation in 3-D: approximation and long time behaviour. Math. Models Methods Appl. Sci. 17, 411–437 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Temam R.: “Infinite-Dimensional Dynamical Systems in Mechanics and Physics”. Springer-Verlag, New York (1997)Google Scholar
  34. 34.
    Vergara V.: A conserved phase field system with memory and relaxed chemical potential. J. Math. Anal. Appl. 328, 789–812 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    W. von Wahl, On the Cahn–Hilliard equation u′ + Δ2 u−Δf(u) = 0, in Mathematics and mathematical engineering (Delft, 1985), Delft Progr. Rep., 10 (1985), 291–310.Google Scholar
  36. 36.
    Zheng S., Milani A.J.: Global attractors for singular perturbations of the Cahn–Hilliard equations. J. Differential Equations 209, 101–139 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Zheng S., Milani A.J.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn–Hilliard equations. Nonlinear Anal. 57, 843–877 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Zelik S.: Asymptotic regularity of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete Contin. Dyn. Syst. 11, 351–392 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Zelik S.: Global averaging and parametric resonances in damped semilinear wave equations. Proc. Roy. Soc. Edinburgh Sect. A 136, 1053–1097 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Maurizio Grasselli
    • 1
    Email author
  • Giulio Schimperna
    • 2
  • Antonio Segatti
    • 2
  • Sergey Zelik
    • 3
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di MatematicaUniversità di PaviaPaviaItaly
  3. 3.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations