Advertisement

Journal of Evolution Equations

, Volume 9, Issue 1, pp 171–195 | Cite as

Unbounded functional calculus for bounded groups with applications

  • Boris Baeumer
  • Markus Haase
  • Mihály Kovács
Open Access
Article

Abstract

In this paper, we develop the unbounded extension of the Hille–Phillips functional calculus for generators of bounded groups. Mathematical applications include the generalised Lévy–Khintchine formula for subordinate semigroups, the analyticity of semigroups generated by fractional powers of group generators, where the power is not an odd integer, and a shifted abstract Grünwald formula. We also give an application of the theory to subsurface hydrology, modeling solute transport on a regional scale using fractional dispersion along flow lines.

Mathematics Subject Classification (2000)

47A60 47D03 26A33 

Keywords

Subordination Fractional powers Operational calculus Functional calculus Fractional calculus Stable laws Fractional derivatives 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    W. Arendt, Ch. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics 96, Birkhäuser Verlag, 2001.Google Scholar
  2. 2.
    Baeumer B., Kovács M., Meerschaert M.M.,(2008). Subordinated multiparameter groups of linear operators: Properties via the transference principle, in: H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise (Eds.), Functional Analysis and Evolution Equations, Dedicated to Gunter Lumer, Birkhäuser Verlag, 2008, pp. 35–50.Google Scholar
  3. 3.
    Baeumer B., Meerschaert M.M., Benson D.A., Wheatcraft S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resources Research 37, 1543–1550 (2001)CrossRefGoogle Scholar
  4. 4.
    Balakrishnan A.V.: An operational calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91, 330–353 (1959)zbMATHCrossRefGoogle Scholar
  5. 5.
    Barkai E., Metzler R., Klafter J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Benson D., Wheatcraft S., Meerschaert M.: Application of a fractional advection-dispersion equation. Water Resources Research 36(6), 1403–1412 (2000)CrossRefGoogle Scholar
  7. 7.
    Benson D.A., Wheatcraft S.W., Meerschaert M.M.: The fractional-order governing equation of Lévy motion. Water Resources Research 36, 1413–1424 (2000)CrossRefGoogle Scholar
  8. 8.
    Benson D.A., Schumer R., Meerschaert M.M., Wheatcraft S.W.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport in Porous Media 42(1–2), 211–240 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Berg C., Boyadzhiev K., DeLaubenfels R.: Generation of generators of holomorphic semigroups. J. Austral. Math. Soc. (Series A) 55, 246–269 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Blumen A., Zumofen G., Klafter J.: Transport aspects in anomalous diffusion: Lévy walks. Phys. Rev. A 40, 3964–3973 (1989)CrossRefGoogle Scholar
  11. 11.
    Bochner S.: Stochastic processes. The Annals of Mathematics 48((4), 1014–1061 (1947)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bochner S.: Diffusion equations and stochastic processes. Proc. Natl. Acad. Sci. U. S. A. 35((7), 368–370 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bouchaud J., Georges A.: Anomalous diffusion in disordered media—statistical mechanisms. models and physical applications, Phys. Rep. 195, 127–293 (1990)CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Vol 1, Academic Press, 1971.Google Scholar
  15. 15.
    Carasso A.S., Kato T.: On Subordinated holomorphic semigroups. Trans. Amer. Math. Soc. 327, 867–878 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Carlson F.: Une Inégalité. Ark Mat. 25B, 1–5 (1935)Google Scholar
  17. 17.
    S. Clark, Sums of Operator Logarithms, Quart. J. Math. 00 (2008), 1-15. Published Advance Access on 17 July 2008. doi: 10.1093/qmath/han010
  18. 18.
    R. R. Coifman and G. Weiss, Transference methods in analysis, Regional Conference Series in Mathematics 31, American Mathematical Society, 1977.Google Scholar
  19. 19.
    K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 2000.Google Scholar
  20. 20.
    W. Feller, An Introduction to Probability Theory and Applications. Volumes I and II, John Wiley and Sons, 1966.Google Scholar
  21. 21.
    Goldstein J.A.: Some remarks on infinitesimal generators of analytic semigroups. Proc. Amer. Math. Soc. 22, 91–93 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Problems with using existing transport models to describe microbial transport in porous media, Trends Math., American Society for Microbiology, Mathematical finance (Konstanz, 2000) (2001), 171–180.Google Scholar
  23. 23.
    Haase M.: A general framework for holomorphic functional calculi. Proc. Edin. Math. Soc. 48, 423–444 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Haase M.: The Functional Calculus for Sectorial Operators. Number 169 in Operator Theory: Advances and Applications. Birkhäuser-Verlag, Basel (2006)Google Scholar
  25. 25.
    Haase M.: Functional calculus for groups and applications to evolution equations. J. Evol. Equ. 7, 529–554 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Haase, On abstract functional calculus extensions. Tübinger Berichte zur Funktionalanalysis 16, 2007/2008.Google Scholar
  27. 27.
    Haller-Dintelmann R., Hieber M.: H -calculus for the product of Non-Commuting operators, Math. Z. 251, 85–100 (2005)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Hieber M., Prüss J.: Functional calculi for linear operators in vector-valued L p-spaces via the transference principle. Adv. Differential Equations 3, 847–872 (1998)zbMATHMathSciNetGoogle Scholar
  29. 29.
    E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications 31, American Mathematical Society, 1957.Google Scholar
  30. 30.
    Jacob N., Schilling R.L.: An analytic proof of the Lévy-Khinchin formula on \({\mathbb{R}^{n}}\) . Publ. Math. Debrecen 53(1–2), 69–89 (1998)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Klafter J., Blumen A., Shlesinger M.F.: Stochastic pathways to anomalous diffusion.. Phys. Rev. A 35, 3081–3085 (1987)CrossRefMathSciNetGoogle Scholar
  32. 32.
    C. Martinez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies 187, Elsevier, 2001.Google Scholar
  33. 33.
    Meerschaert M.M., Benson D.A., Baeumer B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026–5028 (1999)CrossRefGoogle Scholar
  34. 34.
    Meerschaert M.M., Scheffler H.P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York (2001)zbMATHGoogle Scholar
  35. 35.
    Meerschaert M.M., Benson D.A., Baeumer B.: Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117 (2001)CrossRefGoogle Scholar
  36. 36.
    Meerschaert M.M., Scheffler H.-P.: Semistable Lévy motion. Fractional Calculus and Applied Analysis 5(1), 27–54 (2002)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Meerschaert M.M., Benson D.A., Scheffler H.P., Baeumer B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 1103–1106 (2002)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Meerschaert M.M., Tadjeran C.: Finite difference approximations for fractional advestion-dispersion equations. J. Comput. Appl. Math. 172, 65–77 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Meerschaert M. M., Mortensen J., Wheatcraft S.: Fractional vector calculus for fractional advection-dispersion. Physica A 367, 181–190 (2006)CrossRefGoogle Scholar
  40. 40.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)zbMATHGoogle Scholar
  41. 41.
    Phillips R.S.: On the generation of semigroups of linear operators. Pacific J. Math. 2, 343–369 (1952)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Raberto M., Scalas E., Mainardi F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)zbMATHCrossRefGoogle Scholar
  43. 43.
    W. Rudin, Functional Analysis. 2nd ed., International Series in Pure and Applied Mathematics. New York, NY: McGraw-Hill. xviii, 424 p., 1991.Google Scholar
  44. 44.
    Sabatelli L., Keating S., Dudley J., Richmond P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)MathSciNetGoogle Scholar
  45. 45.
    Saichev A.I., Zaslavsky G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Scalas E., Gorenflo R., Mainardi F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Schumer R., Benson D.A., Meerschaert M.M., Wheatcraft S.W.: Eulerian derivation of the fractional advection-dispersion equation. Journal of Contaminant Hydrology 48, 69–88 (2001)CrossRefGoogle Scholar
  48. 48.
    Schumer R., Benson D.A., Meerschaert M.M., Baeumer B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resources Research 39, 1022–1032 (2003)CrossRefGoogle Scholar
  49. 49.
    Unser M., Blu T.: Fractional splines and wavelets. SIAM Rev. 42, 43–67 (1974)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Westphal U.: An approach to fractional powers of operators via fractional differences. Proc. London Math. Soc. 29, 557–576 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Zaslavsky G.: Fractional kinetic equation for hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Phys. D 76, 110–122 (1994)MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand
  2. 2.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations