Aquatic Sciences

, 82:20 | Cite as

Environmental heterogeneity drives macrophyte beta diversity patterns in permanent and temporary ponds in an agricultural landscape

  • Margarita Fernández-Aláez
  • Francisco García-Criado
  • Jorge García-Girón
  • Felisa Santiago
  • Camino Fernández-AláezEmail author
Research Article


Understanding patterns of beta diversity (heterogeneity) and its components (substitution and subset) is important for managing freshwater ecosystems and the research on these topics has increased over the last decade. However, there has been limited empirical research exploring the drivers of these components of beta diversity in ponds from agricultural landscapes, in which hydroperiod length is often a key structural driver. The purpose of our work was to examine the contribution of substitution (species replacement among sites without changes in richness) and subset (species differences among sites when species-poor sites constitute subsets of those with a greater number of taxa) structuring processes on macrophyte beta diversity patterns of sixteen permanent and ten temporary Mediterranean ponds. We also aimed to test the structuring role of local environmental factors and geographic isolation and to determine whether there are differences in the community heterogeneity and the relative importance of the substitution and subset fractions of beta diversity between permanent and temporary ponds. We found that temporary ponds were environmentally and biologically less heterogeneous and supported lower richness than permanent waterbodies. In both pond types, beta diversity almost entirely reflected patterns of species substitution rather than subsets. Local environmental conditions, and not among-pond distance, were the main drivers of macrophyte community structure. Overall, our results suggest that local environmental variables operating through niche processes were the primary mechanisms driving macrophyte beta diversity patterns, thus highlighting the importance of environmental heterogeneity for maintaining pond community diversity in agricultural landscapes. Accordingly, conservation initiatives and ecosystem management strategies should include permanent and temporary pond clusters comprising wide environmental gradients in their efforts to ensure high levels of regional biodiversity.


Aquatic plants Beta partitioning Community structure Environmental factors Temporary and permanent ponds Metacommunity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akasaka M, Takamura N, Mitsuhashi H, Kadono Y (2010) Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshw Biol 55:909–922CrossRefGoogle Scholar
  2. Alahuhta J (2015) Geographic patterns of lake macrophyte communities and species richness at regional scale. J Veg Sci 26:564–575CrossRefGoogle Scholar
  3. Alahuhta J, Kosten S, Akasaka M, Auderset D, Azzella M, Bolpagni R, Heino J (2017) Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J Biogeogr Biogeogr 44:1758–1769CrossRefGoogle Scholar
  4. Alahuhta J, Rääpysjärvi J, Hellsten S, Kuoppala M, Aroviita J (2015) Species sorting drives variation of boreal lake and river macrophyte communities. Commun Ecol 16:76–85CrossRefGoogle Scholar
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  6. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28PubMedCrossRefGoogle Scholar
  7. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693PubMedCrossRefGoogle Scholar
  8. APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington DCGoogle Scholar
  9. Atkinson CL, Golladay SW, First MR (2011) Water quality and planktonic microbial assemblages of isolated wetlands in an agricultural landscape. Wetlands 31:885–894CrossRefGoogle Scholar
  10. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  11. Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557CrossRefGoogle Scholar
  12. Baselga A (2017) Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods Ecol Evol 8:799–808CrossRefGoogle Scholar
  13. Baselga A, Orme CDL, Villéger S, De Bortoli J, Leprieur F (2017) betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.4.
  14. Boschilia SM, de Oliveira EF, Schwarzbold A (2016) Partitioning beta diversity of aquatic macrophyte assemblages in a large subtropical reservoir: prevalence of turnover or nestedness? Aquat Sci 78:615–625CrossRefGoogle Scholar
  15. Bosiacka B, Pienkowski P (2012) Do biogeographic parameters matter? Plant species richness and distribution of macrophytes in relation to area and isolation of ponds in NW Polish agricultural landscape. Hydrobiologia 689:79–90CrossRefGoogle Scholar
  16. Castroviejo S et al. (Eds.) (1986–2013) Flora Iberica: Plantas vasculares de la Península Ibérica e Islas Baleares, vols. 1–8, 10–15, 17–18, 20, 21. Real Jardín Botánico C.S.I.C, Madrid, Spain.Google Scholar
  17. CEC (1995) Wise use and conservation of wetlands, COM (95) 18 a Final. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  18. Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498PubMedCrossRefGoogle Scholar
  19. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434PubMedCrossRefGoogle Scholar
  20. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  21. Cirujano S, Cambra J, Sánchez-Castillo PM, Meco A, Flor-Arnau N (2008) Flora Iberica, Algas Continentales: Carófitos (Characeae). Real Jardín Botánico, CSIC, Madrid, SpainGoogle Scholar
  22. Cirujano S, Meco A, García P, Chirino M (2014) Flora acuática española Hidrófitos vasculares. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  23. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  24. Clarke KR, Warwick RM (2010) Change in marine communities: an approach to Statistical Analysis and Interpretation, 2nd edn. Primer-E Ltd, PlymouthGoogle Scholar
  25. Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis Publisher, New YorkGoogle Scholar
  26. Davies BR, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agr Ecosyst Environ 125:1–8CrossRefGoogle Scholar
  27. De Meester L, Declerck S, Stoks R, Louette G, Van de Meutter F, de Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conserv Mar Freshw Ecosyst 15:715–725CrossRefGoogle Scholar
  28. Della Bella V, Bazzanti M, Dowgiallo MG, Iberite M (2008) Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. Hydrobiologia 597:85–95CrossRefGoogle Scholar
  29. Escalera-Vázquez LH, Zambrano L (2010) The effect of seasonal variation in abiotic factors on fish community structure in temporary and permanent pools in a tropical wetland. Freshw Biol 55:2557–2569CrossRefGoogle Scholar
  30. Fernández-Aláez C, Fernández-Aláez M, García-Criado F, García-Girón J (2018) Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia 812:79–98CrossRefGoogle Scholar
  31. Fernández-Aláez C, Fernández-Aláez M, Santiago NF, Núñez G, Aboal M (2012) ID-tax. Catálogo y claves de identificación de organismos del grupo macrófitos utilizados como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, SpainGoogle Scholar
  32. Florencio M, Serrano L, Gómez-Rodríguez C, Millán A, Díaz-Paniagua C (2009) Inter and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634:167–183CrossRefGoogle Scholar
  33. Gioria M, Schaffers A, Bacaro G, Feehan J (2010) The conservation value of farmland ponds: predicting water beetle assemblages using vascular plants as a surrogate group. Biol Cons 143:1125–1133CrossRefGoogle Scholar
  34. Grillas P, Gauthier P, Yavercovski N, Perennou C (2004) Mediterranean Temporary Pools, Volume 1 Issues relating to conservation, functioning and management. Station biologique de la Tour du Valat, Arles, FranceGoogle Scholar
  35. Grillas P, Roché J (1997) Vegetation of temporary marshes. Ecology and Management, Station Biologique de la Tour du Valat, Arles, FranceGoogle Scholar
  36. He F, Legendre P (2002) Species diversity patterns derived from species-area models. Ecology 83:1185–1198Google Scholar
  37. Heino J, Tolonen KT (2017) Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol Oceanogr 62:2431–2444CrossRefGoogle Scholar
  38. Jeffries M (2008) The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31:765–775CrossRefGoogle Scholar
  39. Jensén S (1977) An objective method for sampling the macrophyte vegetation in lakes. Vegetatio 33:107–118CrossRefGoogle Scholar
  40. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–213CrossRefGoogle Scholar
  41. de Castilla J, y León, (2010) Plan de Gestión de la Zonas Húmedas del Canal de Castilla. Inventario y diagnóstico. Patrimonio Natural de Castilla y León, Valladolid, Spain, Tomo IGoogle Scholar
  42. Kissoon LTT, Jacob DL, Hanson MA, Herwig BR, Bowe SE, Otte ML (2013) Macophytes in shallow lakes: relationships with water, sediment and watershed characteristics. Aquat Bot 109:39–48PubMedPubMedCentralCrossRefGoogle Scholar
  43. Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334CrossRefGoogle Scholar
  44. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  45. Lopes PM, Bini LM, Declerck SAJ, Farjalla VF, Vieira LCG, Bonecker CC, Lansac-Toha AA, Esteves FA, Bozelli RL (2014) Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lougheed VL, Crosbie B, Chow-Fraser P (2001) Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Can J Fish Aquat Sci 58:1603–1612CrossRefGoogle Scholar
  47. Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405CrossRefGoogle Scholar
  48. Maltchik L, Rolon AS, Schott P (2007) Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of Southern Brasil. Limnology 8:23–28CrossRefGoogle Scholar
  49. O’Hare MT, Gunn IDM, Chapman DS, Dudley BJ, Purse BV (2012) Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Divers Distrib 18:603–614CrossRefGoogle Scholar
  50. Oertli B, Céréghino R, Hull A, Miracle R (2009) Pond conservation: from science to practice. Hydrobiologia 634:1–9CrossRefGoogle Scholar
  51. Padial AA, Ceschin F, Declerck AAJ, De Meester L, Boncker CC, Lansac-Tôha FA, Rodrigues L, Rodrigues LC, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pätzig M, Kaletta T, Glemnitz M, Berger G (2012) What governs macrophyte species richness in kettle hole types? A case study from Northeast Germany. Limnologica 42:340–354CrossRefGoogle Scholar
  53. Penning WE, Mjelde M, Dudley B, Hellsten S, Hanganu J, Kolada A, van den Berg M, Poikane S, Phillips G, Willby N, Ecke F (2008) Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat Ecol 42:237–251CrossRefGoogle Scholar
  54. Rolon AS, Lacerda T, Maltchik L, Guadagnin DL (2008) Influence of area, habitat and water chemistry on richness and composition of macrophyte assemblages in southern Brazilian wetlands. J Veg Sci 19:221–228CrossRefGoogle Scholar
  55. Scheffer M, Van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, Hanson MA, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231CrossRefGoogle Scholar
  56. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80CrossRefGoogle Scholar
  57. Soomers H, Karssenberg D, Soons MB, Verweij PA, Verhoeven JTA, Wassen J (2013) Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16:434–451CrossRefGoogle Scholar
  58. Soons MB, van der Vlugt C, van Lith B, Heil GW, Klaassen M (2008) Small seed size increases the potential for dispersal of wetland plants by ducks. J Ecol 96:619–627CrossRefGoogle Scholar
  59. Tonkin JD, Stoll S, Jähnig SC, Haase P (2015) Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos 125:686–697CrossRefGoogle Scholar
  60. Van den Broeck M, Waterkeyn A, Rhazi L, Grillas P, Brendonck L (2015) Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds. Ecol Ind 54:1–11CrossRefGoogle Scholar
  61. Van Geest GJ, Coops H, Roijackers RMM, Buijse AD, Scheffer M (2005) Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. J Appl Ecol 42:251–260CrossRefGoogle Scholar
  62. Vanormelingen P, Cottenie K, Michels E, Muylaert K, Vyverman W, De Meester L (2008) The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshw Biol 53:2170–2183Google Scholar
  63. Vestergaard O, Sand-Jensen K (2000) Aquatic macrophytes richness in danish lakes in relation to alkalinity, transparency, and lake area. Can J Fish Aquat Sci 57:2022–2031CrossRefGoogle Scholar
  64. Welborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363CrossRefGoogle Scholar
  65. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Cons 115:329–341CrossRefGoogle Scholar
  66. Zokan M, Drake JM (2015) The effect of hydroperiod and predation on the diversity of temporary pond zooplankton communities. Ecol Evolut 5:3066–3074CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biodiversity and Environmental Management. Section of EcologyUniversity of LeónLeónSpain
  2. 2.Department of Agroforestry SciencesUniversity of ValladolidValladolidSpain

Personalised recommendations