Advertisement

Aquatic Sciences

, 81:27 | Cite as

Resolving biogeochemical processes in lakes using remote sensing

  • Vincent NouchiEmail author
  • Tiit Kutser
  • Alfred Wüest
  • Beat Müller
  • Daniel Odermatt
  • Theo Baracchini
  • Damien Bouffard
Research Article

Abstract

Remote sensing helps foster our understanding of inland water processes allowing a synoptic view of water quality parameters. In the context of global monitoring of inland waters, we demonstrate the benefit of combining in-situ water analysis, hydrodynamic modelling and remote sensing for investigating biogeochemical processes. This methodology has the potential to be used at global scales. We take the example of four Landsat-8 scenes acquired by the OLI sensor and MODIS-Aqua imagery over Lake Geneva (France—Switzerland) from spring to early summer 2014. Remotely sensed data suggest a strong temporal and spatial variability during this period. We show that combining the complementary spatial, spectral and temporal resolutions of these sensors allows for a comprehensive characterization of estuarine, littoral and pelagic near-surface features. Moreover, by combining in-situ measurements, biogeochemical analysis and hydrodynamic modelling with remote sensing data, we can link these features to river intrusion and calcite precipitation processes, which regularly occur in late spring or early summer. In this context, we propose a procedure that can be used to monitor whiting events in temperate lakes worldwide.

Keywords

Landsat-8 MODIS-Aqua Inland waters Remote sensing Calcification Whiting Global scale monitoring In-situ measurements 

Notes

Acknowledgements

This work was supported by the Margaretha Kamprad Chair at EPFL and by the Fondation pour l’Etude des Eaux du Léman (FEEL) on Lake Geneva. Finally, we acknowledge Carole Lebreton for her kind support with the configuration of the MODIS processing chain and for Brockmann Consult for operating and providing access to the Calvalus cluster computer system. In-situ profiles at SHL2 were provided by the Commission International pour la Protection des Eaux du Leman (CIPEL), INRA CARRTEL Thonon les Bains, and the Information System of the SOERE OLA (http://si-ola.inra.fr) developed by the Eco-Informatique group of INRA. Finally, we acknowledge the Federal Office for the environment (FOEN) for providing National River Monitoring and Survey Programme (NADUF) dataset at PS available at https://www.bafu.admin.ch.

References

  1. Anneville O, Pelletier JP (2000) Recovery of Lake Geneva from eutrophication: quantitative response of phytoplankton. Arch Hydrobiol 148:607–624CrossRefGoogle Scholar
  2. Anneville O, Ginot V, Angeli N (2002a) Restoration of Lake Geneva: expected versus observed responses of phytoplankton to decreases in phosphorus. Lakes Reserv Res Manag 7(2):67–80CrossRefGoogle Scholar
  3. Anneville O, Souissi S, Ibanez F, Ginot V, Druart JC, Angeli N (2002b) Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession. Limnol Oceanogr 47:1355–1366CrossRefGoogle Scholar
  4. Balch WM, Eppley RW, Abbott MR, Reid FMH (1989) Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates. J Plankton Res 11:575–581.  https://doi.org/10.1093/plankt/11.3.575 CrossRefGoogle Scholar
  5. Blanc P, Pelletier JP, Moille JP (1993) Variabilité spatiale et temporelle des paramètres physico-chimiques et biologiques dans les eaux du Léman. Rapp Comm int prot eaux Léman contre pollut, campagne 1992:113–162, 162b–162pGoogle Scholar
  6. Bouffard D, Lemmin U (2013) Kelvin waves in Lake Geneva. J Great Lakes Res 39:637–645.  https://doi.org/10.1016/j.jglr.2013.09.005 CrossRefGoogle Scholar
  7. Bouffard D, Kiefer I, Wüest A, Wunderle S, Odermatt D (2018) Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sens Environ 209:510–523.  https://doi.org/10.1016/j.rse.2018.02.056 CrossRefGoogle Scholar
  8. Brezonik P, Menken KD, Bauer M (2005) Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv Manag 21(4):373–382.  https://doi.org/10.1080/07438140509354442 CrossRefGoogle Scholar
  9. Bricaud A, Morel A (1986) Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Appl Opt 25:571.  https://doi.org/10.1364/AO.25.000571 CrossRefPubMedGoogle Scholar
  10. Brockmann C, Doerffer R, Peters M, Stelzer K, Embacher S, Ruescas A (2016) Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In: Ouwehand L (ed) Proceedings of the living planet symposium, 9–13 May 2016, Prague, Czech Republic, ESA-SP vol 740, pp 54. ISBN: 978-92-9221-305-3Google Scholar
  11. Burkard P (1984) Hydrologie—Bilan hydrologique. In: Comm. int. protection des eaux du Léman, Lausanne: Le Léman Synthèse 1957–1982, CIPEL, Nyon, Switzerland, pp 43–48Google Scholar
  12. Chen CT, Millero FJ (1986) Thermodynamic properties for natural waters covering only the limnological range. Limnol Oceanogr 31(3):657–662CrossRefGoogle Scholar
  13. CIPEL (2015) Rapports sur les études et recherches entreprises dans le bassin Lémanique, campagne 2014. Commission internationale pour la protection des eaux du Léman contre la pollution, CIPEL, Nyon Switzerland, pp 27–31Google Scholar
  14. Doerffer R, Schiller H (2007) The MERIS Case 2 water algorithm. Int J Remote Sens 28:517–535.  https://doi.org/10.1080/01431160600821127 CrossRefGoogle Scholar
  15. Dominik J, Dulinski M, Span D, Hofmann A, Favarger PY, Vernet JP (1993) Transfert de matière et de radio-isotopes entre l’eau et les sediments dans le Léman Tech rep. Commission Internationale Pour la Protection des Eaux du Léman, CIPEL, Nyon, SwitzerlandGoogle Scholar
  16. Finger D, Schmid M, Wüest A (2006) Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resour Res 42(8):W08429.  https://doi.org/10.1029/2005WR004751 CrossRefGoogle Scholar
  17. Gallina N, Salmaso N, Morabito G, Beniston M (2013) Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat Ecol 47(2):177–193.  https://doi.org/10.1007/s10452-013-9433-4 CrossRefGoogle Scholar
  18. Giovanoli VF, Lambert A (1985) Die Einschichtung der Rhone im Genfersee: Ergebnisse von Strömungsmessungen im August 1983. Schweiz Z Hydrol 47:159–178CrossRefGoogle Scholar
  19. Graham ND, Bouffard D, Loizeau J-L (2016) The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay. Environ Sci Pollut Res 23:25412–25426.  https://doi.org/10.1007/s11356-016-7715-9 CrossRefGoogle Scholar
  20. Hauenstein W, Dracos T (1984) Investigation of plunging density currents generated by inflows in lakes. J Hydraul Res 22:157–179.  https://doi.org/10.1080/00221688409499404 CrossRefGoogle Scholar
  21. IOCCG (2000) Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Sathyendranath S (ed) Reports of the international ocean-colour coordinating group, no. 3. IOCCG. DarthmouthGoogle Scholar
  22. Kallio K, Attila J, Härmä P, Koponen S, Pulliainen J, Hyytiäinen MJ, Pyhälahti T (2008) Landsat ETM + images in the estimation of seasonal lake water quality in boreal river basins. Environ Manage 42(3):511–522.  https://doi.org/10.1007/s00267-008-9146-y CrossRefPubMedGoogle Scholar
  23. Kiefer I, Odermatt D, Anneville O, Wüest A, Bouffard D (2015) Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Sci Total Envir 527–528:493–506.  https://doi.org/10.1016/j.scitotenv.2015.05.011 CrossRefGoogle Scholar
  24. Kutser T (2012) The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens Environ 123:334–338.  https://doi.org/10.1016/j.rse.2012.04.004 CrossRefGoogle Scholar
  25. Kutser T, Vahtmäe E, Martin G (2006) Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuar Coast Shelf Sci 67(3):521–529.  https://doi.org/10.1016/j.ecss.2005.12.004
  26. Kutser T, Metsamaa L, Dekker AG (2008) Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuar Coast Shelf Sci 78(4):649–654.  https://doi.org/10.1016/j.ecss.2008.02.024 CrossRefGoogle Scholar
  27. Kutser T, Paavel B, Verpoorter C, Ligi M, Soomets T, Toming K, Casal G (2016) Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens 8(6):497.  https://doi.org/10.3390/rs8060497 CrossRefGoogle Scholar
  28. Lambert A, Giovanoli F (1988) Records of riverborne turbidity currents and indications of slope failures in the Rhone delta of Lake Geneva. Limnol Oceanogr 33(3):458–468CrossRefGoogle Scholar
  29. Lee Z, Shang S, Qi L, Yan J, Lin G (2016) A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens Environ 177:101–106.  https://doi.org/10.1016/j.rse.2016.02.033 CrossRefGoogle Scholar
  30. Loizeau J-L, Dominik J (2000) Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquat Sci 62:54–67.  https://doi.org/10.1007/s000270050075 CrossRefGoogle Scholar
  31. Loizeau J-L, Girardclos S, Dominik J (2012) Taux d’accumulation des sediments recents et bilan de la matière particulaire dans le Leman (Suisse-France). Arch Sci 65:81–92Google Scholar
  32. Lotter AF, Sturm M, Teranes JL, Wehrli B (1997) Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquat Sci 59:304–325.  https://doi.org/10.1007/BF02522361 CrossRefGoogle Scholar
  33. Matthews MW (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32:6855–6899CrossRefGoogle Scholar
  34. Niessen F, Sturm M (1987) The sediments of Lake Baldegg (Switzerland)—sedimentary environment and development of eutrophication for the last 100 year (in German, with English abstract). Arch Hydrobiol 108:365–383.  https://doi.org/10.4319/lo.2005.50.3.0914/pdf CrossRefGoogle Scholar
  35. Nouchi V, Odermatt D, Wüest A, Bouffard D (2018) Effects of non-uniform vertical constituent profiles on remote sensing reflectance of oligo- to mesotrophic lakes. Eur J Remote Sens 51:808–821.  https://doi.org/10.1080/22797254.2018.1493360 CrossRefGoogle Scholar
  36. Obst M, Wehrli B, Dittrich M (2009) CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 7(3):324–347.  https://doi.org/10.1111/j.1472-4669.2009.00200.x CrossRefPubMedGoogle Scholar
  37. Odermatt D, Giardino C, Heege T (2010) Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens Environ 114:607–617.  https://doi.org/10.1016/j.rse.2009.10.016 CrossRefGoogle Scholar
  38. Odermatt D, Gitelson A, Brando VE, Schaepman ME (2012) Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens Environ 118:116–126CrossRefGoogle Scholar
  39. Pahlevan N, Lee Z, Wei J, Schaaf CB, Schott JR, Berk A (2014) On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens Environ 154:272–284.  https://doi.org/10.1016/j.rse.2014.08.001 CrossRefGoogle Scholar
  40. Palmer SCJ, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8.  https://doi.org/10.1016/j.rse.2014.09.021 CrossRefGoogle Scholar
  41. Pitarch J, Odermatt D, Kawka M, Wüest A (2014) Retrieval of vertical particle concentration profiles by optical remote sensing: a model study. Opt Express 22:A947–A959.  https://doi.org/10.1364/OE.22.00A947 CrossRefPubMedGoogle Scholar
  42. Plée K, Pacton M, Ariztegui D (2010) Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva, Switzerland). Geomicrobiol J 27(5):391–399.  https://doi.org/10.1080/01490450903451526 CrossRefGoogle Scholar
  43. Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46(6):1011–1040.  https://doi.org/10.1016/0016-7037(82)90056-4 CrossRefGoogle Scholar
  44. Råman Vinnå L, Wüest A, Bouffard D (2017) Physical effects of thermal pollution in lakes. Water Resour Res 53(5):3968–3987.  https://doi.org/10.1002/2016WR019686 CrossRefGoogle Scholar
  45. Råman Vinnå L, Wüest A, Zappa M, Fink G, Bouffard D (2018) Tributaries affect the thermal response of lakes to climate change. Hydrol Earth Syst Sci 22:31–51.  https://doi.org/10.5194/hess-2017-337 CrossRefGoogle Scholar
  46. Ramisch F, Dittrich M, Mattenberger C, Wehrli B, Wüest A (1999) Calcite dissolution in two deep eutrophic lakes. Geochim Cosmochim Acta 63:3349–3356CrossRefGoogle Scholar
  47. Sastre V, Loizeau J-L, Greinert J, Naudts L, Arpagaus P, Anselmetti F, Wildi W (2010) Morphology and recent history of the Rhone River Delta in Lake Geneva (Switzerland). Swiss J Geosci 103:33–42.  https://doi.org/10.1007/s00015-010-0006-4 CrossRefGoogle Scholar
  48. Schwefel R, Gaudard A, Wüest A, Bouffard D (2016) Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): comparing observational findings and modeling. Water Resour Res 52(11):8811–8826.  https://doi.org/10.1002/2016WR019194 CrossRefGoogle Scholar
  49. Slonecker ET, Jones DK, Pellerin BA (2016) The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Mar Pollut Bull 107(2):518–527.  https://doi.org/10.1016/j.marpolbul.2016.02.076 CrossRefPubMedGoogle Scholar
  50. Soulignac F, Danis P-A, Bouffard D, Chanudet V, Dambrine E, Guénand Y, Harmel T, Ibelings BW, Trevisan D, Uittenbogaard R, Anneville O (2018) Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton abundance in large lakes. J Great Lakes Res 44(4):756–764CrossRefGoogle Scholar
  51. Spencer RJ, Eugster HP, Jones BF (1985) Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution. Geochim Cosmochim Acta 49:739–747.  https://doi.org/10.1016/0016-7037(85)90168-1 CrossRefGoogle Scholar
  52. Spyrakos E, O’Donnell R, Hunter PD et al (2018) Optical types of inland and coastal waters. Limnol Oceanogr 63(2):846–870.  https://doi.org/10.1002/lno.10674 CrossRefGoogle Scholar
  53. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bull Fish Res Board, Canada, p 167Google Scholar
  54. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley Inter-science, New York (ISBN: 978-0-471-51185-4) Google Scholar
  55. Vanhellemont Q, Ruddick K (2014) Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens Environ 145:105–115.  https://doi.org/10.1016/j.rse.2014.01.009 CrossRefGoogle Scholar
  56. Vanhellemont Q, Ruddick K (2015) Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8. Remote Sens Environ 161(5):89–106.  https://doi.org/10.1016/j.rse.2015.02.007 CrossRefGoogle Scholar
  57. Vanhellemont Q, Ruddick K (2016) Acolite for Sentinel-2: aquatic applications of MSI imagery. In: Proceedings of the ESA living planet symposium, Prague, Czech Republic, pp 9–13. http://odnature.naturalsciences.be/downloads/publications/2016_Vanhellemont_ESALP.pdf. Accessed 12 Dec 2017
  58. Wells AJ, Illing LV (1964) Present-day precipitation of calcium carbonate in the Persian Gulf. Dev Sedimentol 1:429–435.  https://doi.org/10.1016/S0070-4571(08)70517-X CrossRefGoogle Scholar
  59. Xue K, Zhang Y, Duan H, Ma R, Loiselle S, Zhang M (2015) A remote sensing approach to estimate vertical profile classes of phytoplankton in a eutrophic lake. Remote Sens 7(11):14403–14427CrossRefGoogle Scholar
  60. Xue K, Zhang Y, Ma R, Duan H (2017) An approach to correct the effects of phytoplankton vertical nonuniform distribution on remote sensing reflectance of cyanobacterial bloom waters. Limnol Oceanogr Methods 15:302–319CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physics of Aquatic Systems Laboratory, Margaretha Kamprad ChairEPFL-ENAC-IEE-APHYSLausanneSwitzerland
  2. 2.Department of Remote Sensing and Marine OpticsEstonian Marine Institute University of TartuTallinnEstonia
  3. 3.Eawag, Swiss Federal Institute of Aquatic Science and TechnologySurface Waters, Research and ManagementKastanienbaumSwitzerland
  4. 4.Odermatt & Brockmann GmbHZurichSwitzerland

Personalised recommendations