Advertisement

Aquatic Sciences

, 81:25 | Cite as

Floating matter: a neglected component of the ecological integrity of rivers

  • O. ShumilovaEmail author
  • K. Tockner
  • A. M. Gurnell
  • S. D. Langhans
  • M. Righetti
  • A. Lucía
  • C. Zarfl
Overview

Abstract

Floating matter (FM) is a pivotal, albeit neglected, element along river corridors contributing to their ecological integrity. FM consists of particulate matter of natural (e.g. wood, branches, leaves, seeds) and anthropogenic (e.g. plastic, human waste) origin as well as of organisms that, due to its properties, is able to float on the water surface. In this paper, we provide a comprehensive overview of the FM cycle and the fundamental environmental functions FM provides along rivers. Indeed, FM serves as an important geomorphological agent, a dispersal vector for animals and plant propagules, a habitat, a resource, and a biogeochemical component. Furthermore, we collected data on the amount of FM accumulating at dams and in reservoirs, and related it to key characteristics of the respective catchments. River fragmentation truncates the natural dynamics of FM through its extraction at damming structures, alteration in the flow regime, and low morphological complexity, which may decrease FM retention. Finally, we identify key knowledge gaps in relation to the role FM plays in supporting river integrity, and briefly discuss FM management strategies.

Keywords

Geomorphological agent Dispersal vector Resource function Habitat Fragmentation Catchment management 

Notes

Acknowledgements

This work has been carried out within the SMART Joint Doctorate Programme ‘Science for the MAnagement of Rivers and their Tidal systems’, funded by the Erasmus Mundus programme of the European Union (http://www.riverscience.it). We also acknowledge financial support through the Excellence Initiative at the University of Tübingen, funded by the German Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG). OS is thankful for a partial support from IGB equal opportunity fund for young female scientists and DFG (SU 405/10-1). SDL has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement no. 748625. We are thankful to Pablo Streich for collecting spatial data on the characteristics of the catchments analysed in this study. We thank two anonymous reviewers whose comments helped to improve the manuscript.

Glossary

Coarse particulate organic matter (CPOM)

Particulate organic matter larger than 1 mm in diameter with a size range spanning from seeds to entire trees (Fisher and Likens 1973; Turowski et al. 2013)

Floating mats

Buoyant accumulations that include living plant biomass, dead organic material and mineral sediments held together by rhizomes and roots secured by attachment to soils (Azza et al. 2006)

Floating matter (FM)

particulate matter of natural and anthropogenic origin (wood, branches, leaves, seeds, waste) that, due to its properties, is able to float on the water surface

Free floating macrophytes

plants that grow unattached within or upon the water layer (Hasan and Chakrabarti 2009)

Large wood

Pieces of wood larger than 1 m in length and more than 0.1 m in diameter (Montgomery et al. 2003)

Macrolitter

Items of natural and anhropogenic origin > 2 cm in size (Suaria and Aliani 2014)

Neuston

Organisms associated with the air–water interface in aquatic habitats, including small vascular plants and inactive life stages of other organisms (e.g., seeds, spores) (Marshall and Gladyshev 2009)

Small wood

Pieces of wood with a diameter 0.05–0.1 m (Lester et al. 2009)

Surface biofilms

Complex of organic compounds and microorganisms that aggregate at the water–air interface and extend a few micrometers (µm) from the surface into the bulk water (Wotton and Preston 2005)

Wrack

Organic matter washed onto shores (Harris et al. 2014)

Supplementary material

27_2019_619_MOESM1_ESM.docx (87 kb)
Supplementary material 1 (DOCX 88 KB)

References

  1. Abbe TB, Montgomery DR (2006) Influence of logjam-formed hard points on the formation of valley-bottom landforms in an old-growth forest valley, Queets River, Washington, USA. Quat Res 65:147–155CrossRefGoogle Scholar
  2. Abelho M (2001) From litterfall to breakdown in streams: a review. Sci World J 1:656–680CrossRefGoogle Scholar
  3. Abril G, Parize M, Pérez MAP, Filizola N (2013) Wood decomposition in Amazonian hydropower reservoirs: an additional source of greenhouse gases. J S Am Earth Sci 44:104–107CrossRefGoogle Scholar
  4. Abril M, Muñoz I, Menéndez M (2016) Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Sci Total Environ 553:330–339PubMedCrossRefPubMedCentralGoogle Scholar
  5. Adams CS, Boar RR, Hubble DS, Gikungu M, Harper DM, Hickley P, Tarras-Wahlberg N (2002) The dynamics and ecology of exotic tropical floating plant mats: Lake Naivasha, Kenya. Hydrobiologia 488:115–122CrossRefGoogle Scholar
  6. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Syst 35:257–284CrossRefGoogle Scholar
  7. Altermatt F (2013) Diversity in riverine metacommunities: a network perspective. Aquat Ecol 47:365–377CrossRefGoogle Scholar
  8. Andersson E, Nilsson C, Johansson ME (2000) Effects of river fragmentation on plant dispersal and riparian flora. Regul Rivers Res Manag 16:83–89CrossRefGoogle Scholar
  9. Azza N, Denny P, van de Koppel J, Kamsiime F (2006) Floating mats: their occurrence and influence on shoreline distribution of emergent vegetation. Freshw Biol 51:1286–1297CrossRefGoogle Scholar
  10. Baldwin DS, Whitworth KL, Hockley CL (2014) Uptake of dissolved organic carbon by biofilms provides insights into the potential impact of loss of large woody debris on the functioning of lowland rivers. Freshw Biol 59:692–702CrossRefGoogle Scholar
  11. Barnes DK, Milner P (2005) Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar Biol 146:815–825CrossRefGoogle Scholar
  12. Battauz YS, de Paggi SBJ, Paggi JC (2017) Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain. Aquat Ecol 51:191–201CrossRefGoogle Scholar
  13. Bell RC, Drewes RC, Channing A, Gvozdik V, Kielgast J, Lötters S, Stuart BL, Zamudio KR (2015) Overseas dispersal of Hyperolius reed frogs from Central Africa to the oceanic islands San Tome and Príncipe. J Biogeogr 42:65–75CrossRefGoogle Scholar
  14. Benacchio V, Piégay H, Buffin-Bélanger T, Vaudor L (2017) A new methodology for monitoring wood fluxes in rivers using a ground camera: potential and limits. Geomorphology 279:44–58CrossRefGoogle Scholar
  15. Benda LE, Sias JC (2003) A quantitative framework for evaluating the mass balance of in-stream organic debris. For Ecol Manag 172:1–16CrossRefGoogle Scholar
  16. Bertoldi W, Welber M, Mao L, Zanella S, Comiti F (2014) A flume experiment on wood storage and remobilization in braided river systems. Earth Surf Process Landf 39:804–813CrossRefGoogle Scholar
  17. Bertoldi W, Welber M, Gurnell AM, Mao L, Comiti F, Tal M (2015) Physical modelling of the combined effect of vegetation and wood on river morphology. Geomorphology 246:178–187CrossRefGoogle Scholar
  18. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181CrossRefGoogle Scholar
  19. Boivin M, Buffin-Bélanger T, Piégay H (2017) Estimation of large wood budgets in a watershed and river corridor at interdecadal to interannual scales in a cold-temperate fluvial system. Earth Surf Process Landf 42:2199–2213CrossRefGoogle Scholar
  20. Boness M (1975) Arthropoden im Hochwassergenist von Flüssen. Bonn Zool Beitr 26:383–401 (in German) Google Scholar
  21. Bowen KL, Kaushik NK, Gordon AM (1998) Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian oligotrophic lakes. Arch fűr Hydrobiol 141:257–281CrossRefGoogle Scholar
  22. Braccia A, Batzer DP (2001) Invertebrates associated with woody debris in a Southeastern U.S. forested floodplain wetland. Wetlands 21:18–31CrossRefGoogle Scholar
  23. Bradley J, Richards D, Bahner C (2005) Debris control structures: evaluation and countermeasures. U.S. Department of Transportation, SalemGoogle Scholar
  24. Brien ALO, Morris L, Keough MJ (2017) Rapid invertebrate responses to macroalgal wrack: two novel field experiments on intertidal mudflats in Southern Australia. Mar Ecol 38:1–17CrossRefGoogle Scholar
  25. Bulla CK, Gomes LC, Miranda LE, Agostinho AA (2011) The ichthyofauna of drifiting macrophyte mats in the Ivinheima River, upper Paraná River basin, Brazil. Neotrop Ichthyol 9:403–409CrossRefGoogle Scholar
  26. Bunte K, Swingle KW, Turowski JM, Abt SR, Cenderelli DA (2016) Measurements of coarse particulate organic matter transport in steep mountain streams and estimates of decadal CPOM exports. J Hydrol 539:162–176CrossRefGoogle Scholar
  27. Burchardt L, Marshall HG (2003) Algal composition and abundance in the neuston surface micro layer from a lake and pond in Virginia (U.S.A.). J Limnol 62:139–142CrossRefGoogle Scholar
  28. Carthey AJR, Fryirs KA, Ralph TJ, Bu H, Leishman MR (2016) How seed traits predict floating times: a biophysical process model for hydrochorous seed transport behaviour in fluvial systems. Freshw Biol 61:19–31CrossRefGoogle Scholar
  29. Čejka T, Čiliak M, Šteffek J (2015) Molluscan diversity in stream driftwood. Relation to land use and river section. Pol J Ecol 63:124–134CrossRefGoogle Scholar
  30. Censky EJ, Hodge K, Dudley J (1998) Over-water dispersal of lizards due to hurricanes. Nature 395:556CrossRefGoogle Scholar
  31. Chen X, Wie X, Scherer R (2005) Influence of wildfire and harvest on biomass, carbon pool, and decomposition of large woody debris in a forested stream of southern interior British Columbia. For Ecol Manag 208:101–114CrossRefGoogle Scholar
  32. Chen SC, Chao YC, Chan HC (2013) Typhoon-dominated influence on wood debris distribution and transportation in a high gradient headwater catchment. J Mt Sci 10:509–521CrossRefGoogle Scholar
  33. Collins BD, Montgomery DR, Fetherston KL, Abbe TB (2012) The floodplain large-wood cycle hypothesis: a mechanism for the physical and biotic structuring of temperature forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology 139:460–470CrossRefGoogle Scholar
  34. Comiti F, Andreoli A, Mao L, Lenzi MA (2008) Wood storage in three mountain streams of the Southern Andes and its hydro-morphological effects. Earth Surf Process Landf 34:155–161Google Scholar
  35. Comiti F, Lucía A, Rickenmann D (2016) Large wood recruitment and transport during large floods: a review. Geomorphology 269:23–39CrossRefGoogle Scholar
  36. Corenblit D, Vidal V, Cabanis M, Steiger J, Garofano-Gomez V, Garreau A, Hortobagyi B, Otto T, Roussel E, Voldoire O (2016) Seed retention by pioneer trees enhances plant diversity resilience on gravel bars: observations from the river Allier, France. Adv Water Resour 93:182–192CrossRefGoogle Scholar
  37. Corti R, Datry T (2012) Invertebrate and sestonic matter in an advancing wetted front travelling down a dry riverbed (Albarine, France). Freshw Sci 31:1187–1201CrossRefGoogle Scholar
  38. Covino T (2017) Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 277:133–144CrossRefGoogle Scholar
  39. Cuffney TF (1988) Input, movement and exchange of organic matter within a subtropical coastal black water river-flood plain system. Freshw Biol 19:305–320CrossRefGoogle Scholar
  40. Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–642CrossRefGoogle Scholar
  41. Cunnings A, Johnson E, Martin Y (2016) Fluvial seed dispersal of riparian trees: transport and depositional processes. Earth Surf Process Landf 41:615–625CrossRefGoogle Scholar
  42. Czarnecka M (2015) Coarse woody debris in temperate littoral zones: implications for biodiversity, food webs and lake management. Hydrobiologia 767:13–25CrossRefGoogle Scholar
  43. Czarnecka M, Pilotto F, Pusch MT (2014) Is coarse woody debris in lakes a refuge or a trap for benthic invertebrates exposed to fish predation? Freshw Biol 59:2400–2412CrossRefGoogle Scholar
  44. Czogler K, Rotarides M (1938) Analyse einer vom Wasser angeschwemmten Molluskenfauna. Arb Ungar Biol Forsch Inst 10:8–43 (in German) Google Scholar
  45. Dandonneau Y, Menkes C, Duteil O, Gorgues T (2008) Concentration of floating biogenic material in convergence zones. J Mar Syst 69:226–232CrossRefGoogle Scholar
  46. de Brouwer JHF, Eekhout JPC, Besse-Lototskaya AA, Hoitink AJF, Ter Braak CJF, Verdonschot PFM (2017) Flow thresholds for leaf retention in hydrodynamic wakes downstream of obstacles. Ecohydrology 10:e1883CrossRefGoogle Scholar
  47. Defina A, Peruzzo P (2012) Diffusion of floating particles in flow through emergent vegetation: further experimental investigation. Water Resour Res 48:1–11CrossRefGoogle Scholar
  48. del Vecchio S, Jucker T, Carboni M, Acosta ATR (2017) Linking plant communities on land and at sea: the effects of Posidonia oceanica wrack on the structure of dune vegetation. Estuar Coast Shelf Sci 184:30–36CrossRefGoogle Scholar
  49. Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Environ Monit Assess 152:149–153PubMedCrossRefPubMedCentralGoogle Scholar
  50. Diehl T (1997) Potential drift accumulation at bridges. US Department of Transportation Federal Highway Administration Research and Development. Turner-Fairbank Highway Research Center, Report No FHWA-RD-97-028, Washington, DCGoogle Scholar
  51. Downing-Kunz M, Stacey M (2011) Flow-induced forces on free-floating macrophytes. Hydrobiologia 671:121–135CrossRefGoogle Scholar
  52. Dunger W (1983) Tiere im Boden. A. Ziemsen Verlag, Wittenberg (in German) Google Scholar
  53. Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Tockner K, Ward JV (1999) A conceptual model of vegetation dynamics on gravel bars of a large alpine river. Wetl Ecol Manag 7:141–153CrossRefGoogle Scholar
  54. Eggert SL, Wallace JB (2007) Wood biofilm as a food resource for stream detritivores. Limnol Oceanogr 52:1239–1245CrossRefGoogle Scholar
  55. Elosegi A, Pozo J (2016) Altered organic matter dynamics in rivers and streams: ecological consequences and management implications. Limnetica 35:303–322Google Scholar
  56. Elosegi A, Díez J, Mutz M (2010) Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657:199–215CrossRefGoogle Scholar
  57. Elosegi A, Díez JR, Flores L, Molinero J (2017) Pools, channel form, and sediment storage in wood-restored streams: potential effects on downstream reservoirs. Geomorphology 279:165–175CrossRefGoogle Scholar
  58. Ensign SH, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res Biogeosci 111:1–13CrossRefGoogle Scholar
  59. Faure F, Demars C, Wieser O, Kunz M, de Alencastro LF (2015) Plastic pollution in Swiss surface waters: nature and concentrations, interaction with pollutants. Environ Chem 12:582–591CrossRefGoogle Scholar
  60. Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439CrossRefGoogle Scholar
  61. Fraaije RGA, Moinier S, van Gogh I, Timmers R, van Deelen JJ, Verhoeven JTA, Soons MB (2017) Spatial patterns of water-dispersed seed deposition along stream riparian gradients. PLoS One 12(9):1–7CrossRefGoogle Scholar
  62. Fremier AK, Seo JI, Nakamura F (2010) Watershed controls on the export of large wood from stream corridors. Geomorphology 117:33–43CrossRefGoogle Scholar
  63. Gabel F, Garcia X-F, Brauns M, Sukhodolov A, Leszinski M, Pusch MT (2008) Resistance to ship-induced waves of benthic invertebrates in various littoral habitats. Freshw Biol 53:1567–1578CrossRefGoogle Scholar
  64. Gathorne-Hardy FJ, Jones DT, Mawdsley NA (2000) The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins. Bot J Linn Soc 71:251–267CrossRefGoogle Scholar
  65. Gerhard M, Reich M (2000) Restoration of streams with large wood: effects of accumulated and built-in wood on channel morphology, habitat diversity and aquatic fauna. Int Rev Hydrobiol 85:123–137CrossRefGoogle Scholar
  66. Gerken B, Böttcher H, Böwingloh F, Dörfer K, Leushacke-Schneider C, Robinson A, Wienhöfer M (1998) Treibgut und Genist—Landschaftsmüll oder Quelle und Antrieb dynamischer Lebensvorgänge in Auen? Auenregeneration Fachbeiträge 1:1–24 (in German) Google Scholar
  67. Gittman RK, Scyphers SB, Smith CS, Neylan IP, Grabowski JH (2016) Ecological consequences of shoreline hardening: a meta-analysis. Bioscience 66:763–773PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gladyshev MI (1986) Neuston of inland waters (A review). Hydrobiol J 22:1–7Google Scholar
  69. Gladyshev MI (2002) Biophysics of the surface microlayer of aquatic ecosystems. IWA Publishing, LondonGoogle Scholar
  70. Golladay SW, Sinsabaugh RL (1991) Biofilm development on leaf and wood surfaces in a boreal river. Freshw Biol 25:437–450CrossRefGoogle Scholar
  71. Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Res Appl 19:317–334CrossRefGoogle Scholar
  72. Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175CrossRefGoogle Scholar
  73. Grasset C, Mendonça R, Villamor Saucedo G, Bastviken D, Roland F, Sobek S (2018) Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnol Oceanogr 63:1488–1501CrossRefPubMedPubMedCentralGoogle Scholar
  74. Grill G, Dallaire CO, Chouinard EF, Sindorf N, Lehner B (2014) Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol Indic 45:148–159CrossRefGoogle Scholar
  75. Gschnitzer T, Gems B, Mazzorana B, Aufleger M (2017) Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology 279:128–140CrossRefGoogle Scholar
  76. Gurnell AM (2007) Analogies between mineral sediment and vegetative particle dynamics in fluvial systems. Geomorphology 89:9–22CrossRefGoogle Scholar
  77. Gurnell AM (2013) Wood in fluvial systems. In: Shroder J Jr, Wohl E (eds) Treatise on geomorphology. Academic Press, San Diego, pp 163–188CrossRefGoogle Scholar
  78. Gurnell AM (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25CrossRefGoogle Scholar
  79. Gurnell AM, Sweet R (1998) The distribution of large woody debris accumulations and pools in relation to woodland stream management in a small, low-gradient stream. Earth Surf Process Landf 23:1101–1121CrossRefGoogle Scholar
  80. Gurnell AM, Petts GE, Hannah DM, Smith BPG, Edwards PJ, Kollmann J, Ward JV, Tockner K (2001) Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surf Process Landf 26:31–62CrossRefGoogle Scholar
  81. Gurnell AM, Piegay H, Swanson FJ, Gregory SV (2002) Large wood and fluvial processes. Freshw Biol 47:601–620CrossRefGoogle Scholar
  82. Gurnell A, Tockner K, Edwards P, Petts G (2005) Effects of deposited wood on biocomplexity of river corridors. Front Ecol Environ 3:377–382CrossRefGoogle Scholar
  83. Gurnell AM, Goodson J, Thompson K, Clifford N, Armitage P (2007) The river bed: a dynamic store for viable plant propagules? Earth Surf Process Landf 32:1257–1272CrossRefGoogle Scholar
  84. Gurnell AM, Thompson K, Goodson JM, Moggridge H (2008) Propagule deposition along river margins: linking hydrology and ecology. J Ecol 96:553–565CrossRefGoogle Scholar
  85. Gurnell AM, Bertoldi W, Corenblit D (2012) Changing river channels: the roles of hydrological processes, plants and pioneer landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev 111:129–141CrossRefGoogle Scholar
  86. Gurnell AM, Corenblit D, García de Jalón D, González del Tánago M, Grabowski RC, O’Hare MT, Szewczyk M (2016) A conceptual model of vegetation–hydrogeomorphology interactions within river corridors. River Res Appl 32:142–163CrossRefGoogle Scholar
  87. Gurnell AM, Bertoldi W, Francis RA, Gurnell J, Mardhiah U (2018) Understanding processes of island development on an island braided river over timescales from days to decades. Earth Surf Process Landf.  https://doi.org/10.1002/esp.4494 CrossRefGoogle Scholar
  88. Haden A (1997) Benthic ecology of the Colorado River system through the Colorado Plateau region. MSc Thesis. Northern Arizona UniversityGoogle Scholar
  89. Haden GA, Blinn DW, Shannon JP, Wilson KP (1999) Driftwood: an alternative habitat for macroinvertebrates in a large desert river. Hydrobiologia 397:179–186CrossRefGoogle Scholar
  90. Haga H, Moriishida T, Morishita N, Fujimoto T (2017) Properties of small instream wood as a logjam clogging agent: implications for clogging dynamics based on wood density, water content, and depositional environment. Geomorphology 296:1–10CrossRefGoogle Scholar
  91. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins K (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  92. Harris C, Strayer DL, Findlay S (2014) The ecology of freshwater wrack along natural and engineered Hudson River shorelines. Hydrobiologia 722:233–245CrossRefGoogle Scholar
  93. Hart SK, Hibbs DE, Perakis SS (2013) Riparian litter inputs to streams in the central Oregon Coast Range. Freshw Sci 32:343–358CrossRefGoogle Scholar
  94. Harvey J, Gooseff M (2015) River corridor science: hydrologic exchange and ecological consequences from bed forms to basins. Water Resour Res 51:6893–6922CrossRefGoogle Scholar
  95. Hasan MR, Chakrabarti R (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture technical paper no 531. Rome, FAO. p 123Google Scholar
  96. Hassan MA, Church M, Lisle TE, Brardinoni F, Benda L, Grant GE (2005) Sediment transport and channel morphology of small, forested streams. J Am Water Resour Assoc 41:853–876CrossRefGoogle Scholar
  97. Hauenstein W (2003) Entsorgungspflicht versus Nutzen von Totholz im Gewässerein Interessenkonflikt für die Wasserkraft. Wasser Energie Luft 95:363–366 (in German) Google Scholar
  98. Heerhartz SM, Toft JD, Cordell JR, Dethier MN, Ogston AS (2016) Shoreline armoring in an estuary constrains wrack-associated invertebrate communities. Estuar Coasts 39:171–188CrossRefGoogle Scholar
  99. Henderson PA, Hamilton HF (1995) Standing crop and distribution of fish in drifting and attached floating meadow within an upper amazonian Varzea Lake. J Fish Biol 47:266–276CrossRefGoogle Scholar
  100. Hering D, Plachter H (1997) Riparian ground beetles (Coeloptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111:261–270PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hoffmann A, Hering D (2000) Wood-associated macroinvertebrate fauna in Central European streams. Int Rev Hydrobiol 85:25–48CrossRefGoogle Scholar
  102. Holloway JV, Rillig MC, Gurnell AM (2017a) Underground riparian wood: buried stem and coarse root structures of black poplar (Populus nigra L.). Geomorphology 279:188–198CrossRefGoogle Scholar
  103. Holloway JV, Rillig MC, Gurnell AM (2017b) Physical environmental controls on riparian root profiles associated with black poplar (Populus nigra L.) along the Tagliamento River, Italy. Earth Surf Process Landf 42:1262–1273CrossRefGoogle Scholar
  104. Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48PubMedCrossRefPubMedCentralGoogle Scholar
  105. Hoover TM, Richardson JS, Yonemitsu N (2006) Flow substrate interactions create and mediate leaf litter resource patches in streams. Freshw Biol 51:435–447CrossRefGoogle Scholar
  106. Horáčková J, Podroužková Š, Juřičková L (2015) River floodplains as habitat and bio-corridors for distribution of land snails: their past and present. J Landsc Ecol 8:23–39CrossRefGoogle Scholar
  107. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141PubMedCrossRefPubMedCentralGoogle Scholar
  108. Hurley R, Woodward J, Rothwell JJ (2018) Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat Geosci 11:251–257CrossRefGoogle Scholar
  109. Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598CrossRefGoogle Scholar
  110. Johnson SL, Swanson F, Grant G, Wondzell S (2000) Riparian forest disturbances by a mountain flood—the influence of floated wood. Hydrol Process 14:3031–3050CrossRefGoogle Scholar
  111. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium (LARS), Canadian Special Publication of Fisheries and Aquatic Sciences, vol 106, pp 110–127Google Scholar
  112. Karrenberg S, Edwards PJ, Kollmann J (2002) The life history of Salicaceae living in the active zone of floodplains. Freshw Biol 47:733–748CrossRefGoogle Scholar
  113. Kiessling T, Gutow L, Thiel M (2015) Marine litter as a habitat and dispersal vector. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 141–181CrossRefGoogle Scholar
  114. Kleinschmidt Energy and Water Consultants (2008) Appalachian Power Company, Claytor Lake Hydroelectric Project. In: Debris study final report. Roanoke, VirginiaGoogle Scholar
  115. Koljonen S, Louhi P, Mäki-Petäys A, Huusko A, Muotka T (2012) Quantifying the effects of in-stream habitat structure and discharge on leaf retention: implications for stream restoration. Freshw Sci 31:1121–1130CrossRefGoogle Scholar
  116. Kooi M, Besseling E, Kroeze C, van Wezel AP, Koelmans AA (2018) Modeling the fate and transport of plastic debris in freshwaters: review and guidance. In: Wagner M, Lambert S (eds) Freshwater microplastics. The handbook of environmental chemistry, vol 58. Springer, ChamGoogle Scholar
  117. Kosten S, Pineiro M, de Goede E, de Klein J, Lamers LPM, Ettwig K (2016) Fate of methane in aquatic systems dominated by free-floating plants. Water Res 104:200–207PubMedCrossRefGoogle Scholar
  118. Kramer N, Wohl E (2014) Estimating fluvial wood discharge using time-lapse photography with varying sampling intervals. Earth Surf Process Landf 39:844–852CrossRefGoogle Scholar
  119. Kramer N, Wohl E (2017) Rules of the road: a qualitative and quantitative synthesis of large wood transport through drainage networks. Geomorphology 279:74–97CrossRefGoogle Scholar
  120. Krause S, Klaar MJ, Hannah DM, Mant J, Bridgeman J, Trimmer M, Manning-Jones S (2014) The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. Wiley Interdiscip Rev Water 1:263–275CrossRefGoogle Scholar
  121. Krejčí L, Máčka Z (2012) Anthropogenic controls on large wood input, removal and mobility: examples from rivers in the Czech Republic. Area 44:226–236CrossRefGoogle Scholar
  122. Langhans SD (2000) Schwemmgut: Indikator der ökologischen Integrität einer Flussaue. Diplomarbeit. EAWAG/ETH Zürich (in German) Google Scholar
  123. Langhans SD (2006) Riverine floodplain heterogeneity as a controller of organic matter dynamics and terrestrial invertebrate distribution. Thesis. ETH ZürichGoogle Scholar
  124. Langhans SD, Richard U, Rueegg J, Uehlinger U, Edwards P, Doering M, Tockner K (2013) Environmental heterogeneity affects input, storage, and transformation of coarse particulate organic matter in a floodplain mosaic. Aquat Sci 75:335–348CrossRefGoogle Scholar
  125. Langlade L-R, Décamps O (1994) Plant colonization on river gravel bars: the effect of litter accumulation. C R Acad Sci Paris 317:899–905Google Scholar
  126. Lastra M, Rodil IF, Sánchez-Mata A, García-Gallego M, Mora J (2014) Fate and processing of macroalgal wrack subsidies in beaches of Deception Island, Antarctic Peninsula. J Sea Res 88:1–10CrossRefGoogle Scholar
  127. Le Lay Y-F, Moulin B (2007) Les barrages face à la problématique des bois flottants: collecte, traitement et valorisation La Houille Blanche. Revue internationale de l’eau 3:96–103 (in French) Google Scholar
  128. Le Lay YF, Piégay H, Moulin B (2013) Wood entrance, deposition, transfer and effects on fluvial forms and processes, problem statements and challenging issues. In: Shroder J, Wohl E (eds) Treatise on geomorphology, vol 12. Academic Press, San Diego, pp 20–36CrossRefGoogle Scholar
  129. Lester RE, Wright W, Jones-Lennon M, Rayment P (2009) Large versus small wood in streams: the effect of wood dimension on macroinvertebrate communities. Fundam Appl Limnol Arch für Hydrobiol 174:339–351CrossRefGoogle Scholar
  130. Loeser MR, McRae BH, Howe MM, Whitham TG (2006) Litter hovels as havens for riparian spiders in an unregulated river. Wetlands 26:13–19CrossRefGoogle Scholar
  131. Lucía A, Antonello A, Campana D, Cavalli M, Crema S, Franceschi S, Marchese E, Niedrist M, Schneiderbauer S, Comiti F (2015a) Monitoring and modeling large wood transport in a mountain basin of North-eastern Italy. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J-C, Grant GE (eds) Engineering geology for society and territory-river basins. Reservoir sedimentation and water resources, vol 3. Springer, Torino, pp 155–158Google Scholar
  132. Lucía A, Comiti F, Borga M, Cavalli M, Marchi L (2015b) Dynamics of large wood during a flash flood in two mountain catchments. Nat Hazards Earth Syst Sci 15:1741–1755CrossRefGoogle Scholar
  133. Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B Biol Sci 279:1033–1040CrossRefGoogle Scholar
  134. Macvicar B, Piégay H (2012) Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France). Earth Surf Process Landf 37:1272–1289CrossRefGoogle Scholar
  135. Mahoney JM, Rood SB (1998) Streamflow requirements for cottonwood seedling recruitment: an integrative model. Wetlands 18:634–645CrossRefGoogle Scholar
  136. Malard F, Tockner K, Dole-Olivier M-J, Ward V (2002) A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640CrossRefGoogle Scholar
  137. Malmqvist B (2002) Aquatic invertebrates in riverine landscapes. Freshw Biol 47:679–694CrossRefGoogle Scholar
  138. Mardhiah U, Caruso T, Gurnell AM, Rillig MC (2014) Just a matter of time: fungi and roots significantly and rapidly aggregate soil over four decades along the Tagliamento River, NE Italy. Soil Biol Biochem 75:133–142CrossRefGoogle Scholar
  139. Mardhiah U, Rillig MC, Gurnell A (2015) Reconstructing the development of sampled sites on fluvial island surfaces of the Tagliamento River, Italy, from historical sources. Earth Surf Process Landf 40:629–664CrossRefGoogle Scholar
  140. Marshall HG, Burchardt L (2005) Neuston: its definition with a historical review regarding its concept and community structure. Arch Hydrobiol 164:429–448CrossRefGoogle Scholar
  141. Marshall HG, Gladyshev MI (2009) Neuston in aquatic ecosystems. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 97–102CrossRefGoogle Scholar
  142. Martin DJ, Benda LA (2001) Patterns of instream wood recruitment and transport at the watershed scale. Trans Am Fish Soc 130:940–958CrossRefGoogle Scholar
  143. Masó M, Garcés E, Pagès F, Camp J (2003) Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. Sci Mar 67:107–111CrossRefGoogle Scholar
  144. Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N (2017) How life-history traits affect ecosystem properties: effects of dispersal in metaecosystems. Oikos 126:532–546CrossRefGoogle Scholar
  145. Matheson A, Thoms M, Southwell M, Reid M (2017) Does reintroducing large wood influence the hydraulic landscape of a lowland river at multiple discharges? Ecohydrology.  https://doi.org/10.1002/eco.1854 CrossRefGoogle Scholar
  146. Mazzorana B, Zischg A, Largiader A, Hübl J (2009) Hazard index maps for woody material recruitment and transport in alpine catchments. Nat Hazards Earth Syst Sci 9:197–209CrossRefGoogle Scholar
  147. Mazzorana B, Hübl J, Zischg A, Largiader A (2011) Modelling woody material transport and deposition in alpine rivers. Nat Hazards 56:425–449CrossRefGoogle Scholar
  148. Mazzorana B, Ruiz-Villanueva V, Marchi L, Cavalli M, Gems B, Gschnitzer T, Mao L, Iroumé A, Valdebenito G (2017) Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. J Flood Risk Manag 11:207–222CrossRefGoogle Scholar
  149. Measey GJ, Vences M, Drewes RC, Chiari Y, Melo M, Bourles B (2007) Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. J Biogeogr 34:7–20CrossRefGoogle Scholar
  150. Merritt DM, Wohl EE (2002) Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecol Appl 12:1071–1087CrossRefGoogle Scholar
  151. Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Appl 22:1–26CrossRefGoogle Scholar
  152. Merten E, Finlay J, Johnson L, Newman R, Stefan H, Vondracek B (2010) Factors influencing wood mobilization in streams. Water Resour Res 46:W10514.  https://doi.org/10.1029/2009WR008772 CrossRefGoogle Scholar
  153. Merten EC, Vaz PG, Decker-Fritz JA, Finlay JC, Stefan HG (2013) Relative importance of transport, breakage, and decay as processes depleting large wood from streams. Geomorphology 190:40–47CrossRefGoogle Scholar
  154. Meyer J, Rimböck A (2014) GIS basierter Ansatz zur Abschätzung des Schwemmholzpotenzials in Wildbächen; Internationales Symposium “Wasser-und Flussbau im Alpenraum”, 25.-27.06.2014 in Zürich; Tagungspublikation S.443 ff; Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glazialogie der Eidgenössischen Technischen Hochschule Zürich Nr. 228; Zürich (in German) Google Scholar
  155. Montgomery DR, Collins BD, Buffington JM, Abbe TB (2003) Geomorphic effects of wood in rivers. In: Gregory SV, Boyer KL, Gurnell AM (eds) The ecology and management of wood in world rivers. Am. Fish. Soc, Bethesda, pp 21–47Google Scholar
  156. Moog O, Chovanec A (2000) Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interests. Hydrobiologia 422:99–109CrossRefGoogle Scholar
  157. Moore CJ, Lattin GL, Zellers AF (2011) Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. J Integr Coast Zone Manag 11:65–73Google Scholar
  158. Moulin B, Piégay H (2004) Characteristics and temporal variability of large woody debris trapped in a reservoir on the River Rhone (Rhone): implications for river basin management. River Res Appl 20:79–97CrossRefGoogle Scholar
  159. Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28:246–257CrossRefGoogle Scholar
  160. Nakamura F, Seo JI, Akasaka T, Swanson FJ (2017) Largewood, sediment, and flow regimes: their interactions and temporal changes caused by human impacts in Japan. Geomorphology 279:176–187CrossRefGoogle Scholar
  161. Naman SM, Rosenfeld JS, Richardson JS (2016) Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Can J Fish Aquat Sci 73:1292–1305CrossRefGoogle Scholar
  162. Nanson GC (1980) Point bar and floodplain formation of the meandering Beatton River, northeastern British Columbia, Canada. Sedimentology 27:3–29CrossRefGoogle Scholar
  163. Nanson GC, Barbetti M, Taylor G (1995) River stabilisation due to changing climate and vegetation during the late Quaternary in western Tasmania, Australia. Geomorphology 13:145–158CrossRefGoogle Scholar
  164. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285PubMedCrossRefGoogle Scholar
  165. Newbold JD, Elwood JW, O’Neill RV, Winkle WV (1981) Measuring nutrient spiraling in streams. Can J Fish Aquat Sci 38:860–863CrossRefGoogle Scholar
  166. Ngari AN, Kinyamario JI, Ntiba MJ, Mavuti KM (2008) Factors affecting abundance and distribution of submerged and floating macrophytes in Lake Naivasha, Kenya, African. J Ecol 47:32–39Google Scholar
  167. Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev Camb Philos Soc 85:837–858PubMedGoogle Scholar
  168. Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.02709 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Osei NA, Gurnell AM, Harvey GL (2015a) The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river. Geomorphology 235:77–87CrossRefGoogle Scholar
  170. Osei NA, Harvey GL, Gurnell AM (2015b) The early impact of large wood introduction on the morphology and sediment characteristics of a lowland river. Limnologica 54:33–43CrossRefGoogle Scholar
  171. Parker C, Henshaw AJ, Harvey GL, Sayer CD (2017) Reintroduced large wood modifies fine sediment transport and storage in a lowland river channel. Earth Surf Process Landf.  https://doi.org/10.1002/esp.4123 CrossRefGoogle Scholar
  172. Pettit NE, Naiman RJ (2006) Flood-deposited wood creates regeneration niches for riparian vegetation on a semi-arid South African river. J Veg Sci 17:615–624CrossRefGoogle Scholar
  173. Pettit NE, Naiman RJ, Rogers KH, Little JE (2005) Post-flooding distribution and characteristics of large woody debris piles along the semi-arid Sabie River, South Africa. River Res Appl 21:27–38CrossRefGoogle Scholar
  174. Pettit NE, Latterell JJ, Naiman RJ (2006) Formation, distribution and ecological consequences of flood-related wood debris piles in a bedrock confined river in semi-arid South Africa. River Res Appl 22:1097–1110CrossRefGoogle Scholar
  175. Picco L, Bertoldi W, Comiti F (2017) Dynamics and ecology of wood in world rivers. Geomorphology 279:10–11CrossRefGoogle Scholar
  176. Piégay H, Gurnell A (1997) Large woody debris and river geomorphological pattern: examples from SE France and S. England. Geomorphology 19:99–116CrossRefGoogle Scholar
  177. Piégay H, Gregory KJ, Bondarev V et al (2005) Public perception as a barrier to introducing wood in rivers for restoration purposes. Environ Manag 36:665–674CrossRefGoogle Scholar
  178. Piégay H, Moulin B, Hupp C (2017) Assessment of transfer patterns and origins of in-channel wood in large rivers using repeated field surveys and wood characterisation (the Isère River upstream of Pontcharra, France). Geomorphology 279:27–43CrossRefGoogle Scholar
  179. Pilotto F, Bertoncin A, Harvey GL, Wharton G, Pusch MT (2014) Diversification of stream invertebrate communities by large wood. Freshw Biol 59:2571–2583CrossRefGoogle Scholar
  180. Pilotto F, Harvey GL, Wharton G, Pusch MT (2016) Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers. Aquat Sci 78:755–766CrossRefGoogle Scholar
  181. Pozo J, Gonzalez E, Díez R, Molinero J, Elosegi A (1997) Inputs of particulate organic matter to streams with different riparian vegetation. J N Am Benthol Soc 16:602–611CrossRefGoogle Scholar
  182. Pringle CM (2003) What is hydrological connectivity and why is it ecologically important? Hydrol Process 17:2685–2689CrossRefGoogle Scholar
  183. Pusch M, Fiebig D, Brettar I, Eisenmann H, Ellis BK, Kaplan LA, Lock MA, Naegeli MW, Traunspurger W (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshw Biol 40:453–495CrossRefGoogle Scholar
  184. Puth LM, Wilson KA (2001) Boundaries and corridors as a continuum of ecological flow control: lessons from rivers and streams. Conserv Biol 15:21–30CrossRefGoogle Scholar
  185. Quinn JM, Ngaire RP, Parkyn SM (2007) Factors influencing retention of coarse particulate organic matter in streams. Earth Surf Process Landf 32:1186–1203CrossRefGoogle Scholar
  186. Ravazzolo D, Mao L, Picco L, Sitzia T, Lenzi MA (2015a) Geomorphic effects of wood quantity and characteristics in three Italian gravel-bed rivers. Geomorphology 246:79–89CrossRefGoogle Scholar
  187. Ravazzolo D, Mao L, Picco L, Lenzi MA (2015b) Tracking log displacement during floods in the Tagliamento River using RFID and GPS tracker devices. Geomorphology 228:226–233CrossRefGoogle Scholar
  188. Reeves GH, Burnett KM, Mcgarry EV (2003) Sources of large wood in the main stem of a fourth-order watershed in coastal Oregon. Can J For Res 33:1363–1370CrossRefGoogle Scholar
  189. Richardson JS, Bilby RE, Bondar CA (2005) Organic matter dynamics in small streams of the Pacific Northwest. J Am Water Resour Assoc 41:921–934CrossRefGoogle Scholar
  190. Richardson JS, Hoover TM, Lecerf A (2009) Coarse particulate organic matter dynamics in small streams: towards linking function to physical structure. Freshw Biol 54:2116–2126CrossRefGoogle Scholar
  191. Rickenmann D (1997) Schwemmholz und hochwasser. Wasser Energie Luft 89:115–119 (in German) Google Scholar
  192. Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshw Biol 47:661–677CrossRefGoogle Scholar
  193. Rood SB, Kaluthota S, Gill KM, Hillman EJ, Woodman SG, Pearce DW, Mahoney JM (2016) A twofold strategy for riparian restoration: combining a functional flow regime and direct seeding to re-establish cottonwoods. River Res Appl 32:836–844CrossRefGoogle Scholar
  194. Rosado J, Morais M, Tockner K (2015) Mass dispersal of terrestrial organisms during first flush events in a temporary stream. River Res Appl 31:912–917CrossRefGoogle Scholar
  195. Rossi F (2007) Recycle of buried macroalgal detritus in sediments: use of dual-labelling experiments in the field. Mar Biol 150:1073–1081CrossRefGoogle Scholar
  196. Ruiz-Villanueva V, Wyżga B, Zawiejska J, Hajdukiewicz M, Stoffel M (2016a) Factors controlling large-wood transport in a mountain river. Geomorphology 272:21–31CrossRefGoogle Scholar
  197. Ruiz-Villanueva V, Piégay H, Gurnell A, Marston RA, Stoffel M (2016b) Recent advances quantifying the large wood dynamics in river basins: new methods and remaining challenges. Rev Geophys 54:611–652CrossRefGoogle Scholar
  198. Ruiz-Villanueva V, Piégay H, Gaertner V, Perret F, Stoffel M (2016c) Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena 140:182–194CrossRefGoogle Scholar
  199. Ruiz-Villanueva V, Badoux A, Boes R, Rickenmann D, Rickli C, Schalko I, Schmocker L, Schwarz M, Steeb N, Stoffel M, Weitbrecht V (2016d) Large wood management in rivers—a practice-oriented research project in Switzerland. In: Proc 13th Congress Interaprevent, Lucerne, Switzerland, pp 244–245. ISBN 978-3-901164-23-1Google Scholar
  200. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267CrossRefGoogle Scholar
  201. Sadri SS, Thompson RC (2014) On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar Pollut Bull 81:55–60PubMedCrossRefPubMedCentralGoogle Scholar
  202. Sarneel JM, Soons MB, Geurts JJ, Beltman B, Verhoeven JT (2011) Multiple effects of land-use changes impede the colonization of open water in fen ponds. J Veg Sci 22:551–563CrossRefGoogle Scholar
  203. Saveanu L, Martín PR (2015) Neuston: a relevant trophic resource for apple snails? Limnologica 52:75–82CrossRefGoogle Scholar
  204. Schenk ER, Moulin B, Hupp CR, Richter JM (2014) Large wood budget and transport dynamics on a large river using radio telemetry. Earth Surf Process Landf 39:487–498CrossRefGoogle Scholar
  205. Schiesari L, Zuanon J, Azevedo-Ramos C, Garcia M, Gordo M, Messias M, Vieira EM (2003) Macrophyte rafts as dispersal vectors for fishes and amphibians in the Lower Solimões River, Central Amazon. J Trop Ecol 19:333–336CrossRefGoogle Scholar
  206. Schneider KN, Winemiller KO (2008) Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610:235–244CrossRefGoogle Scholar
  207. Schuchert C (1935) Historical geology of the Antillean–Caribbean region. Wiley, New York, pp 79–110Google Scholar
  208. Schwab A, Stammel B, Kiehl K (2018) Seed dispersal via a new watercourse in a reconnected floodplain: differences in species groups and seasonality. Restor Ecol 26:103–113CrossRefGoogle Scholar
  209. SedAlp (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower), Aigner J, Habersack H, Rindler R, Schober B, Wagner B, Comiti F, Recking A, Moser M, Piégay H, Rimböck A, Lenzi MA, Picco L, Moretto J, Ravazzolo D (2014) Third SedAlp Milestone first set of practically applicable bedload/wood transport relations and models. http://www.alpine-space.org/2007-2013/uploads/tx_txrunningprojects/3rd_SedAlp_Milestone.pdf
  210. Senter AE, Pasternack GB, Piégay H, Vaughan MC (2017a) Wood export prediction at the watershed scale. Earth Surf Process Landf 42:2377–2392CrossRefGoogle Scholar
  211. Senter AE, Pasternack GB, Piégay H, Vaughan MC, Lehyan JS (2017b) Wood export varies among decadal, annual, seasonal, and daily scale hydrologic regimes in a large, Mediterranean climate, mountain river watershed. Geomorphology 276:164–179CrossRefGoogle Scholar
  212. Seo JI, Nakamura F (2009) Scale-dependent controls upon the fluvial export of large wood from river catchments. Earth Surf Process Landf 34:786–800CrossRefGoogle Scholar
  213. Seo JI, Nakamura F, Akamura D, Nakano H, Ichiyanagi H, Chun W (2008) Factors controlling the fluvial export of large woody debris, and its contribution to organic carbon budgets at watershed scales. Water Resour Res 44:W04428.  https://doi.org/10.1029/2007WR006453 CrossRefGoogle Scholar
  214. Seo JI, Nakamura F, Chun KW (2010) Dynamics of large wood at the watershed scale: a perspective on current research limits and future directions. Landsc Ecol Eng 6:271–287CrossRefGoogle Scholar
  215. Seo JI, Nakamura F, Chun KW, Kim SW, Grant GE (2015) Precipitation patterns control the distribution and export of large wood at the catchment scale. Hydrol Process 29:5044–5057CrossRefGoogle Scholar
  216. Shannon JP, Blinn DW, Benenati PL, Wilson KP (1996) Organic drift in a regulated desert river. Can J Fish Aquat Sci 53:1360–1369CrossRefGoogle Scholar
  217. Shin CJ, Nam JM, Kim JG (2015) Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte. Landsc Ecol Eng 11:111–117CrossRefGoogle Scholar
  218. Siepe A (1989) Untersuchungen zur Besiedlung einer Auen-Catena am südlichen Oberrhein durch Laufkäfer (Coleoptera: Carabidae) unter besonderer Berücksichtigung der Einflüsse des Flutgeschehens. Dissertation, Universität Freiburg (in German) Google Scholar
  219. Soons MB, de Groot GA, Cuesta Ramirez MT, Fraaije RGA, Verhoeven JTA, de Jager M (2017) Directed dispersal by an abiotic vector: wetland plants disperse their seeds selectively to suitable sites along the hydrological gradient via water. Funct Ecol 31:499–508CrossRefGoogle Scholar
  220. Southwood TRE (1977) Habitat, the templet for ecological strategies. J Anim Ecol 46:337–365CrossRefGoogle Scholar
  221. Spänhoff B, Meyer EI (2004) Breakdown rates of wood in streams. J N Am Benthol Soc 23:189–197CrossRefGoogle Scholar
  222. Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T (2010) Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–1434PubMedCrossRefPubMedCentralGoogle Scholar
  223. Sponseller RA, Heffernan JB, Fisher SG (2013) On the multiple ecological roles of water in river networks. Ecosphere 4:17.  https://doi.org/10.1890/ES12-00225.1 CrossRefGoogle Scholar
  224. Steeb N, Rickenmann D, Badoux A, Rickli C, Waldner P (2017) Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology 279:112–127CrossRefGoogle Scholar
  225. Steelandt S, Marguerie D, Bhiry N, Delwaide A (2015) A study of the composition, characteristics, and origin of modern driftwood on the western coast of Nunavik (Quebec, Canada). J Geophys Res Biogeosci 120:480–501CrossRefGoogle Scholar
  226. Strain EMA, Heath T, Steinberg PD, Bishop MJ (2018) Eco-engineering of modified shorelines recovers wrack subsidies. Ecol Eng 112:26–33CrossRefGoogle Scholar
  227. Strayer DL, Findlay SEG (2010) Ecology of freshwater shore zones. Aquat Sci 72:127–163CrossRefGoogle Scholar
  228. Suaria G, Aliani S (2014) Floating debris in the Mediterranenan Sea. Mar Pollut Bull 86:494–504PubMedCrossRefPubMedCentralGoogle Scholar
  229. Tank JL, Webster JR, Benfield EF (1993) Microbial respiration on decaying leaves and sticks in a southern Appalachian stream. J N Am Benthol Soc 12:394–405CrossRefGoogle Scholar
  230. Tank JJL, Rosi-Marshall EJE, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146CrossRefGoogle Scholar
  231. Tenzer C (2000) Passive Ausbreitung terrestrischer Wirbelloser über Fliessgewässer unter besonderer Berücksichtigung der Landgehäuseschnecken. Jahrestagung der Gesellschaft für Ökologie. Parey Buchverlag, Berlin (in German) Google Scholar
  232. Tenzer C (2001) Passive Ausbreitung terrestrischer Wirbelloser über Fliessgewässer. 31. Jahrestagung der Gesellschaft für Ökologie 31:218 (in German) Google Scholar
  233. Tenzer C (2003) Ausbreitung terrestrischer Wirbelloser durch Fliessgewässer. Dissertation. Philipps-Universität Marburg (in German) Google Scholar
  234. Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol 42:181–264Google Scholar
  235. Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol 43:279–418CrossRefGoogle Scholar
  236. Thiel M, Haye PA (2006) The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol 44:323–429CrossRefGoogle Scholar
  237. Thiel M, Hinojosa IA, Joschko T, Gutow L (2011) Spatio-temporal distribution of floating objects in the German Bight (North Sea). J Sea Res 65:368–379CrossRefGoogle Scholar
  238. Tinner U, Walburger E (2008) Kiesbänke im Rhein-von Landquart zum Bodensee. Bot Helv 118:72–76 (in German) CrossRefGoogle Scholar
  239. Tockner K, Waringer JA (1997) Measuring drift during a receding flood: results from an Austrian mountain brook (Ritrodat-Lunz). Int Rev Gesamten Hydrobiol 82:1–13CrossRefGoogle Scholar
  240. Tonin AM, Gonçalves JF, Bambi P et al (2018) Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Sci Rep 7(1):10799CrossRefGoogle Scholar
  241. Tonné N, Beeckman H, Robert E, Koedam N (2016) Towards an unknown fate: the floating behaviour of recently abscised propagules from wide ranging Rhizophoraceae mangrove species. Aquat Bot 140:23–33CrossRefGoogle Scholar
  242. Trodden LRB (2012) Local physical and hydraulic factors affecting leaf retention within streams. PhD Thesis, Cardiff UniversityGoogle Scholar
  243. Trottmann N (2004) Schwemgut-Ausbreitungsmedium terrestrischer Invertebraten in Gewässerkorridoren. Diplomarbeit. ETH Zürich/EAWAGGoogle Scholar
  244. Turowski JM, Badoux A, Bunte K, Rickli C, Federspiel N, Jochner M (2013) The mass distribution of coarse particulate organic matter exported from an alpine headwater stream. Earth Surf Dyn 1:1–11Google Scholar
  245. Turowski JM, Hilton RG, Sparkes R (2016) Decadal carbon discharge by a mountain stream is dominated by coarse organic matter. Geology 44:27–30CrossRefGoogle Scholar
  246. URS Corporation Gomez and Sullivan Engineers (2012) Conowingo hydroelectric project. In: Final Study Report, Debris Management StudyGoogle Scholar
  247. Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E (2006) Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. J N Am Benthol Soc 25:379–392CrossRefGoogle Scholar
  248. van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, van Franeker JA, Eriksen M, Siegel D, Galgani F, Law KL (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006.  https://doi.org/10.1088/1748-9326/10/12/124006 CrossRefGoogle Scholar
  249. van der Zee B (2018) Wet wipe pollution ‘changing the shape of British riverbeds’. Guardian (2 May). https://www.theguardian.com/environment/2018/may/02/wet-wipes-boom-is-changing-theshape-of-british-riverbeds. Accessed 27 Dec 2018
  250. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Gushing E (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  251. Vercruysse K, Grabowski RC, Rickson RJ (2017) Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci Rev 166:38–52CrossRefGoogle Scholar
  252. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) (2008) Ereignisanalyse Hochwasser 2005: Teilprojekt Schwemmholz. Bericht 4240. ETH, Zurich (in German) Google Scholar
  253. Vogt K, Rasran L, Jensen K (2007) Seed deposition in drift lines: opportunity or hazard for species establishment? Aquat Bot 86:385–392CrossRefGoogle Scholar
  254. Walling DE, Collins AL, Stroud RW (2008) Tracing suspended sediment and particulate phosphorus sources in catchments. J Hydrol 350:274–289CrossRefGoogle Scholar
  255. Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, pp 29–42Google Scholar
  256. Ward JV, Tockner K, Arscott DB, Claret C (2002a) Riverine landscape diversity. Freshw Biol 47:517–539CrossRefGoogle Scholar
  257. Ward JV, Tockner K, Arscott DB, Claret C (2002b) Riverine landscape diversity. Freshw Biol 47:57–539CrossRefGoogle Scholar
  258. Webster JR, Meyer JL (1997) Organic matter budgets for streams: a synthesis. J N Am Benthol Soc 16:141–161CrossRefGoogle Scholar
  259. Welber M, Bertoldi W, Tubino M (2013) Wood dispersal in braided streams: results from physical modeling. Water Resour Res 49:7388–7400CrossRefGoogle Scholar
  260. West AJ, Lin C-W, Lin T-C, Hilton RG, Liu S-H, Chang C-T, Lin K-C, Galy A, Sparkes RB, Hovius N (2011) Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol Oceanogr 56:77–85CrossRefGoogle Scholar
  261. Wohl E (2013) Floodplains and wood. Earth Sci Rev 123:194–212CrossRefGoogle Scholar
  262. Wohl E, Scott DN (2016) Wood and sediment storage and dynamics in river corridors. Earth Surf Process Landf 42:5–23Google Scholar
  263. Wohl E, Bledsoe BP, Jacobsen RB, Poff NL, Rathbun SL, Waters DM, Wilcox AC (2015) The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65:358–371CrossRefGoogle Scholar
  264. Wohl E, Bledsoe BP, Fausch KD, Kramer N, Bestgen KR, Gooseff MN (2016) Management of large wood in streams: an overview and proposed framework for hazard evaluation. J Am Water Resour Assoc 52:315–335CrossRefGoogle Scholar
  265. Wohl E, Hall RO, Lininger KB, Sutfin NA, Walters DM (2017) Carbon dynamics of river corridors and the effects of human alterations. Ecol Monogr 87:379–409CrossRefGoogle Scholar
  266. Wondzell SM, Swanson FJ (1999) Floods, channel storage and the hyporheic zone. Water Resour Res 35:555–567CrossRefGoogle Scholar
  267. Wotton RS, Preston TM (2005) Surface films: areas of water bodies that are often overlooked. Bioscience 55:137–145CrossRefGoogle Scholar
  268. Wurl O, Ekau W, Landing WM, Zappa CJ (2017) Sea surface microlayer in a changing ocean—a perspective. Elem Sci Anth 5:31.  https://doi.org/10.1525/elementa.228 CrossRefGoogle Scholar
  269. Xiong S, Nilsson C (1997) Dynamics of leaf litter accumulation and its effects on riparian vegetation: a review. Bot Rev 63:240–264CrossRefGoogle Scholar
  270. Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses. Ecology 89:621–634PubMedCrossRefGoogle Scholar
  271. Yoshikawa M, Hoshino Y, Iwata N (2013) Role of seed settleability and settling velocity in water for plant colonization of river gravel bars. J Veg Sci 24:712–723CrossRefGoogle Scholar
  272. Zaitsev YP (1997) Neuston of seas and ocean. In: Liss P, Duce R (eds) The sea surface and global change. Cambridge University Press, New York, pp 371–382CrossRefGoogle Scholar
  273. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170CrossRefGoogle Scholar
  274. Zen S, Gurnell AM, Zolezzi G. Surian N (2017) Exploring the role of trees in the evolution of meander bends: the Tagliamento River, Italy. Water Resour Res 53:5943–5962CrossRefGoogle Scholar
  275. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the’plastisphere’: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146PubMedCrossRefPubMedCentralGoogle Scholar
  276. Zhang X, Nepf HM (2011) Exchange flow between open water and floating vegetation. Environ Fluid Mech 11(5):531–546CrossRefGoogle Scholar
  277. Zupanski D, Ristic R (2012) Floating debris from the Drina river. Carpath J Earth Environ Sci 7:5–12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Forschungsverbund Berlin e.V.BerlinGermany
  2. 2.Institute of BiologyFreie Universität BerlinBerlinGermany
  3. 3.Department of Civil, Environmental and Mechanical EngineeringTrento UniversityTrentoItaly
  4. 4.School of GeographyQueen Mary University of LondonLondonUK
  5. 5.Center for Applied GeosciencesEberhard Karls Universität TübingenTübingenGermany
  6. 6.Austrian Science FundViennaAustria
  7. 7.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  8. 8.BC3-Basque Centre for Climate ChangeLeioaSpain

Personalised recommendations