Advertisement

Aquatic Sciences

, 81:12 | Cite as

Methane dynamics in a large river: a case study of the Elbe River

  • Anna MatoušůEmail author
  • Martin Rulík
  • Michal Tušer
  • Adam Bednařík
  • Karel Šimek
  • Ingeborg Bussmann
Research Article

Abstract

We conducted multiple small (2011–2012) and one large sampling campaign (2013) at selected profiles along the Elbe River. With the data we were able to outline spatial and temporal variability of methane concentration, oxidation and emissions in one of the major rivers of Central Europe. The highest methane concentrations were found in human-altered riverine habitats, i.e., in a harbor (1,888 nmol L−1), in a lock and weirs (1409 ± 1545 nmol L−1), and in general in the whole “impounded” river segment (383 ± 215 nmol L−1). On the other hand, the lowest methane concentrations were found in the “lowland” river segment (86 ± 56 nmol L−1). The methane oxidation rate was more efficient in the “natural” segment (71 ± 113 nmol L−1day−1, which means a turnover time of 49 ± 83 day−1) than in the “lowland” segment (4 ± 3 nmol L−1day−1, which means a turnover time of 39 ± 45 day−1). Methane emissions from the surface water into the atmosphere ranged from 0.4 to 11.9 mg m−2 day−1 (mean 2.1 ± 0.6 mg m−2 day−1) with the highest CH4 emissions at the Meissen harbor (94 kg CH4 year−1). Such human-altered riverine habitats (i.e., harbors and similar) have not been taken into consideration in the CH4 budget before, despite them being part of the river ecosystems, they may be significant CH4 hot-spots. The total CH4 diffusive flux from the whole Elbe was estimated to be approximately 97 t CH4 year−1.

Keywords

Diffusive flux Ebullition Elbe river Methane concentration Methane oxidation rate Methane turnover time 

Notes

Acknowledgements

This work is dedicated to the memory of our friend and colleague Dr. Jan Jezbera, who supported this study by providing his knowledge, a lot of encouragement, and help during the sampling campaigns on the Elbe. This project was financially supported by project GAJU 145/2013/D, by project GAČR-13-00243S (PI-K. Šimek), and by project CZ.1.07/2.3.00/20.0204 (CEKOPOT) co-financed by the European Social Fund and the state budget of the Czech Republic. This logistically and technically challenging project would not have taken place without the great help and support of many of our colleagues! Infinite gratitude belongs to Prof. Jan Kubečka for his motivation and providing the Thor Heyerdahl research vessel, to Ing. Radka Malá and Marie Štojdlová for their technician help in the laboratory, further to Dr. Martin Blaser from the Max Planck Institute for Terrestrial Microbiology in Marburg (Germany), Dr. Vojtěch Kasalický, Dr. Jiří Nedoma, Doc. Josef Hejzlar and his colleagues, Prof. Hana Šantrůčková, Prof. Jaroslav Vrba, Jakub Matoušů, Dr. Kateřina Diáková, Dr. Jaroslava Frouzová, Mgr. Kateřina Bernardová, and Dr. Tomáš Jůza, for providing and organizing logistical support.

References

  1. Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181CrossRefGoogle Scholar
  2. Abril G, Commarieu MV, Guérin F (2007) Enhanced CH4 oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52(1):470–475CrossRefGoogle Scholar
  3. Adams MS, Kausch H, Gaumert T, Krüger KE (1996) The effect of the reunification of Germany on the water chemistry and ecology of selected rivers. Environ Conserv 23(1):35–43CrossRefGoogle Scholar
  4. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220CrossRefGoogle Scholar
  5. Anthony SE, Prahl FG, Peterson TD (2012) Methane dynamics in the Willamette River, Oregon. Limnol Oceanogr 57(5 ):1517–1530CrossRefGoogle Scholar
  6. Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from fresh-water lake sediment. Appl Environ Microbiol 66:5259–5266CrossRefGoogle Scholar
  7. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:B4009CrossRefGoogle Scholar
  8. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113:G02024CrossRefGoogle Scholar
  9. Bastviken D, Tranvik L, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331(6013):50CrossRefGoogle Scholar
  10. Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res.  https://doi.org/10.1029/2011JG001656 CrossRefGoogle Scholar
  11. Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS (2014) High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environ Sci Technol 48:11100–11108.  https://doi.org/10.1021/es501871g CrossRefPubMedGoogle Scholar
  12. Bednařík A, Čáp L, Maier V, Rulík M (2015) Contribution of methane benthic and atmospheric fluxes of an experimental area (Sitka Stream). Clean Soil Air Water 43:1136–1142.  https://doi.org/10.1002/clen.201300982 CrossRefGoogle Scholar
  13. Blees J, Niemann H, Zopfi WChB, Schubert J, Kirf CJ, Veronesi MK, Hitz ML, Lehmann C M. F (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59(2):311–324.  https://doi.org/10.4319/lo.2014.59.2.0311 CrossRefGoogle Scholar
  14. Borges A, Vanderborght J-P, Schiettecatte L-S, Gazeau F, Ferrón-Smith S, Delile B, Frankignoulle M (2014) Variability of gas transfer velocity of CO2 in a macrotidal estuary (The Sheldt). Estuaries 27:593–603.  https://doi.org/10.1007/BF02907647 CrossRefGoogle Scholar
  15. Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48(3):305–312CrossRefGoogle Scholar
  16. Bussmann I (2005) Methane release through suspension of littoral sediment. Biogeochemistry 74(3):283–302CrossRefGoogle Scholar
  17. Bussmann I, Matousu A, Osudar R, Mau S (2015) Assessment of the radio 3H–CH4 tracer technique to measure aerobic methane oxidation in the water column. Limnol Oceanogr Methods 13(6):312–327CrossRefGoogle Scholar
  18. Calow P, Petts GE, [eds.] (1992) The rivers handbook: hydrological and ecological principles, vol 1. Blackwell Scientific Publications, Oxford, p 499Google Scholar
  19. Campeau A, Lapierre J-F, Vachon D, del Giorgio PA (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem Cycles.  https://doi.org/10.1002/2013GB004685 CrossRefGoogle Scholar
  20. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–118.  https://doi.org/10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  21. Crawford JT, Striegl RG, Wickland KP, Dornblaser MM, Stanley EH (2013) Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J Geophys Res Biogeosci 118:482–494CrossRefGoogle Scholar
  22. Dawson JJ, Adhikari YR, Soulsby C, Stutter MI (2012) The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland. Sci Total Environ 434:159–170.  https://doi.org/10.1016/j.scitotenv.2011.08.048 CrossRefPubMedGoogle Scholar
  23. de Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol Oceanogr 32(3):716–722CrossRefGoogle Scholar
  24. Delsontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425CrossRefGoogle Scholar
  25. DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873.  https://doi.org/10.1021/es2005545 CrossRefPubMedGoogle Scholar
  26. Devlin SP, Saarenheimo J, Syväranta J, Jones RI (2015) Top consumer abundance influences lake methane efflux. Nat Commun 6:8787.  https://doi.org/10.1038/ncomms9787 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33:350–357CrossRefGoogle Scholar
  28. Dzyuban AN (2011) Methane and its transformation processes in water of some tributaries of the Rybinsk Reservoir. Water Resour 38(5):615–620CrossRefGoogle Scholar
  29. Grunwald M, Dellwig O, Beck M, Dippner JW, Freund JA, Kohlmeier C, Schnetger B, Brumsack H-J (2009) Methane in the southern North Sea: sources, spatial distribution and budgets. Estuar Coast Shelf Sci 81(4): 445–456CrossRefGoogle Scholar
  30. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–481.  https://doi.org/10.1038/nature09186 CrossRefPubMedGoogle Scholar
  31. Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res Biogeosci 112:G03006CrossRefGoogle Scholar
  32. Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:L21407.  https://doi.org/10.1029/2006GL027929 CrossRefGoogle Scholar
  33. Henning M, Hentschel B (2013) Sedimentation and flow patterns induced by regular and modified groynes on the River Elbe, Germany. Ecohydrology 6:598–610.  https://doi.org/10.1002/eco.1398 CrossRefGoogle Scholar
  34. Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611CrossRefGoogle Scholar
  35. Hlaváčová E, Rulík M, Čáp L (2005) Anaerobic microbial metabolism in hyporheic sediment of a gravel bar in a small lowland stream. River Res Appl 21:1003–1011CrossRefGoogle Scholar
  36. IKSE (Internationale Kommission zum Schutz der Elbe) (ed) (2005) Die Elbe und ihr Einzugsgebiet – Ein geographisch-hydrologischer und wasserwirtschaftlicher Überblick. http://www.ikse-mkol.org/publikationen/verschiedenes/1/
  37. IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2013 – The physical science Basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781107415324 CrossRefGoogle Scholar
  38. Jones JB, Mulholland PJ (1998) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250CrossRefGoogle Scholar
  39. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51(2):1195–1204CrossRefGoogle Scholar
  40. Kirschke S et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRefGoogle Scholar
  41. Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183CrossRefGoogle Scholar
  42. Liikanen A, Martikainen P (2003) Effect of ammonium and oxygen on the methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake. Chemosphere 52:1287–1293CrossRefGoogle Scholar
  43. Lilley MD, de Angelis MA, Olson EJ (1996) Methane concentration and estimated fluxes from Pacific northwest rivers. In: Adams DD, Seitzinger SP, Crill PM (eds) Cycling of reduced gases in the Hydrosphere. Schweizerbart’scheVerlagbuchhandlung, Stuttgart, pp 187–196Google Scholar
  44. Mach V, Bednařík A, Čáp L, Šipoš J, Rulík M (2016) Seasonal measurement of greenhouse gas concentrations and emissions along the longitudinal profile of small stream. Pol J Environ Stud 25(5):2047–2056CrossRefGoogle Scholar
  45. Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emissions hot spots. Environ Sci Technol 47:8130–8137CrossRefGoogle Scholar
  46. Matoušů A, Osudar R, Šimek K, Bussmann I (2017) Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany. Aquat Sci 79:443–458CrossRefGoogle Scholar
  47. McAuliffe C (1971) Gas chromatographic determination of solutes by multiple phase equilibrium. Chemtech 1:46–51Google Scholar
  48. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde W, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119CrossRefGoogle Scholar
  49. Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice fields and forest soil. FEMS Microbial Ecol 62:24–31CrossRefGoogle Scholar
  50. Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337CrossRefGoogle Scholar
  51. Osudar R, Matoušů A, Alawi M, Wagner D, Bussmann I (2015) Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuar Coast Shelf Sci 160:10–21CrossRefGoogle Scholar
  52. Prange A, Furrer R, Einax JW (eds) (2000) Die Elbe und ihre Nebenflüsse – Belastung, Trends, Bewertung, Perspektiven. ATV-DVWK, AG “Schadstoffe und Ökologie der Elbe”. GFA Verlag, Hennef, 168 ppGoogle Scholar
  53. Richey JE, Devol AH, Victoria R, Wofsy S (1988) Biogenic gases and the oxidation and reduction of carbon in the Amazon River and floodplain waters. Limnol Oceanogr 33:55 l–561CrossRefGoogle Scholar
  54. Rulík M, Bednařík A, Mach V, Brablcová L, Buriánková L, Badurová P, Gratzová K (2013) Methanogenic system of a small lowland stream Sitka, Czech Republic. In Matovic MD (ed) Biomass now—cultivation and utilization, Intech, New York, 395–426.  https://doi.org/10.5772/3437 CrossRefGoogle Scholar
  55. Saarnio S, Winiwarter W, Leita J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429CrossRefGoogle Scholar
  56. Sawakuchi HO, Bastviken D, Sawakuchi A, Krusche A, Ballester MVR, Richey JE (2014) Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Glob Change Biol 20:2829–2840CrossRefGoogle Scholar
  57. Sepulveda-Jauregui A, Walter Anthony K, Martinez-Cruz K, Greene S, Thalasso F (2015) Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12:3197–3223CrossRefGoogle Scholar
  58. Silvennoinen H, Liikanen A, Rintala J, Martikainen PJ (2008) Greenhouse gas fluxes from eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90:193–208CrossRefGoogle Scholar
  59. Stanley EH, Casson NJ, Crawford J, Loken L (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86(2):146–171CrossRefGoogle Scholar
  60. StLouis VL, Kelly C, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. Bioscience 50(9):766–775CrossRefGoogle Scholar
  61. Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cycles 26:1–11CrossRefGoogle Scholar
  62. Swinnerton JW, Linnenbom VJ, Cheek CH (1969) Distribution of methane and carbon monoxide between the atmosphere and natural waters. Environ Sci Technol 3(9):836–838CrossRefGoogle Scholar
  63. Upstill-Goddard RC, Barnes J, Owens NJP (2000) Methane in the southern North Sea: Low-salinity inputs, estuarine removal, and atmospheric flux. Glob Biogeochem Cycles 14(4):1205CrossRefGoogle Scholar
  64. Utsumi M, Nojiri Y, Nakamura T, Nozawa T, Otsuki A, Takamura N, Watanabe M, Seki H (1998) Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter. Limnol Oceanogr 43:10–17CrossRefGoogle Scholar
  65. Wanninkhof R (1992) Relationship between wind speed and and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382.  https://doi.org/10.1029/92JC00188 CrossRefGoogle Scholar
  66. Wilcock RJ, Sorrell BK (2008) Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments. Water Air Soil Pollut 188:155–170CrossRefGoogle Scholar
  67. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  68. Zaiss U, Winter P, Kaltwasser H (1982) Microbial methane oxidation in the River Saar. Zeitschrift fur Allgemeine Mikrobiologie 2(22):139–148CrossRefGoogle Scholar
  69. Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F (2008) Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91:71–84CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biology Centre CASInstitute of HydrobiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Ecology and Environmental Sciences, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  4. 4.Alfred Wegener Institute Helmholtz-Zentrum für Polar-und MeeresforschungHelgolandGermany

Personalised recommendations