Advertisement

Aquatic Sciences

, 81:8 | Cite as

Changes in aquatic communities recently invaded by a top predator: evidence of American bullfrogs in Aceguá, Uruguay

  • Noelia GobelEmail author
  • Gabriel Laufer
  • Sofía Cortizas
Research Article

Abstract

Effects caused by the invasive American bullfrog (Lithobates catesbeianus) are poorly understood at the community level. This study assessed the effects of a small feral bullfrog population (at lag invasion phase) on the different components of native aquatic communities (phytoplankton, zooplankton, invertebrates, fish and amphibians) of Aceguá, Uruguay. Our interest focused on exploring the early local effects of this invasion. We explored whether there existed any difference in taxa richness, abundances and size structure in association to bullfrog invasion, using four seasonal sampling of all the lentic system around the foci (two invaded and five non-invaded ponds). We analysed the occurrence of differences between the invaded and the non-invaded communities: for the taxa richness we used rarefaction, for the abundances and body sizes we used mean tests, and for the tadpole developmental stages we used G-test. We only found statistically significant bullfrog effects, in fish and anuran larvae. The fish assemblage was favoured, reaching greater abundance and body size in the bullfrog invaded ponds. In these ponds, the nektonic tadpoles diminished their abundances, and the benthic tadpoles also reached greater body sizes, but decreasing their recruitment. Our results suggest that bullfrog invasion could have complex effects, acting asymmetrically, affecting different trophic paths, and depending on native species’ habits and attributes. Understanding these effects, in early invasion foci, has a great relevance to awareness of local environmental authorities and the implementation of management plans.

Keywords

Rana catesbeiana Biological invasion Positive effects Characidae Hylidae Odontophrynidae 

Notes

Acknowledgements

GL and NG thank the Agencia Nacional de Investigación e Innovación (ANII) (POS_NAC_2015_1_109517) and the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay, for their postgraduate grants. GL is a member of the Sistema Nacional de Investigadores (SNI), Uruguay. NG and SC thank the ANII for the Beca de Iniciación. We all thank the support of the Rufford Foundation and the local habitants of the studied sites for their contributions during fieldwork. All the used animal welfare protocols were authorized by the National Commission for Animal Experimentation, Museo Nacional de Historia Natural (Code 013/11).

Supplementary material

27_2018_604_MOESM1_ESM.docx (358 kb)
Supplementary material 1 (DOCX 357 KB)

References

  1. Adams MJ (2000) Pond permanence and the effects of exotic vertebrates on anurans. Ecol Appl 10:559–568. https://doi.org/10.1890/1051-0761(2000)010[0559:PPATEO]2.0.CO;2CrossRefGoogle Scholar
  2. Adams M, Pearl C (2007) Problems and opportunities managing invasive bullfrogs: is there any hope? In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, Netherlands, pp 679–693CrossRefGoogle Scholar
  3. Adams MJ, Pearl CA, Bruce Bury R (2003) Indirect facilitation of an anuran invasion by non-native fishes. Ecol Lett 6:343–351.  https://doi.org/10.1046/j.1461-0248.2003.00435.x CrossRefGoogle Scholar
  4. Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109.  https://doi.org/10.2307/1466987 CrossRefGoogle Scholar
  5. Arim M, Abades SR, Laufer G et al (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153.  https://doi.org/10.1111/j.1600-0706.2009.17768.x CrossRefGoogle Scholar
  6. Babbitt KJ, Tanner GW (1998) Effects of cover and predator size on survival and development of Rana utricularia tadpoles. Oecologia 114:258–262.  https://doi.org/10.1007/s004420050444 CrossRefPubMedGoogle Scholar
  7. Babbitt KJ, Baber MJ, Tarr TL (2003) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552.  https://doi.org/10.1139/z03-131 CrossRefGoogle Scholar
  8. Batista M, Silva M, Barreto C (2015) Effects of introduction and decline of a bullfrog population (Lithobates catesbeianus) in a community of amphibians in the Cerrado from Central Brazil. Herpetol Notes 8:263–265Google Scholar
  9. Baxter CV, Fausch KD, Murakami M, Chapman PL (2004) Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–2663.  https://doi.org/10.1890/04-138 CrossRefGoogle Scholar
  10. Bellard C, Genovesi P, Jeschke JM (2016) Global patterns in threats to vertebrates by biological invasions. Proc R Soc B 283:20152454.  https://doi.org/10.1098/rspb.2015.2454 CrossRefPubMedGoogle Scholar
  11. Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608.  https://doi.org/10.1046/j.1461-0248.2002.00352.x CrossRefGoogle Scholar
  12. Boelter RA, Cechin SZ (2007) Impact of the bullfrog diet (Lithobates catesbeianus-Anura, Ranidae) on native fauna: case study from the region of Agudo-RS-Brazil. Nat Conserv 5:115–123Google Scholar
  13. Boone MD, Little EE, Semlitsch RD (2004) Overwintered bullfrog tadpoles negatively affect salamanders and anurans in native amphibian communities. Copeia.  https://doi.org/10.1643/CE-03-229R1 CrossRefGoogle Scholar
  14. Both C, Melo AS (2015) Diversity of anuran communities facing bullfrog invasion in Atlantic forest ponds. Biol Invasions 17:1137–1147.  https://doi.org/10.1007/s10530-014-0783-1 CrossRefGoogle Scholar
  15. Both C, Kaefer ÍL, Santos TG, Cechin ST (2008) An austral anuran assemblage in the Neotropics: seasonal occurrence correlated with photoperiod. J Nat Hist 42:205–222.  https://doi.org/10.1080/00222930701847923 CrossRefGoogle Scholar
  16. Both C, Solé M, dos Santos TG, Cechin SZ (2009) The role of spatial and temporal descriptors for neotropical tadpole communities in southern Brazil. Hydrobiologia 624:125–138.  https://doi.org/10.1007/s10750-008-9685-5 CrossRefGoogle Scholar
  17. Brazeiro A (2015) Eco-regiones de Uruguay: Biodiversidad, presiones y conservación. Aportes a la estrategia nacional de biodiversidad. Facultad de Ciencias, CIEDUR, VS-Uruguay, SZU, MontevideoGoogle Scholar
  18. Bwanika GN, Chapman LJ, Kizito Y, Balirwa J (2006) Cascading effects of introduced Nile perch (Lates niloticus) on the foraging ecology of Nile tilapia (Oreochromis niloticus). Ecol Freshw Fish 15:470–481.  https://doi.org/10.1111/j.1600-0633.2006.00185.x CrossRefGoogle Scholar
  19. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547.  https://doi.org/10.1890/11-1952.1 CrossRefPubMedGoogle Scholar
  20. Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110–110.  https://doi.org/10.1016/j.tree.2005.01.003 CrossRefPubMedGoogle Scholar
  21. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329.  https://doi.org/10.2980/i1195-6860-12-3-316.1 CrossRefGoogle Scholar
  22. Duxbury C, Holland J, Pluchino M (2010) Experimental evaluation of the impacts of the invasive catfish Hoplostemum littorale (Hancock, 1828) on aquatic macroinvertebrates. Aquat Invasions 5:97–102.  https://doi.org/10.3391/ai.2010.5.1.11 CrossRefGoogle Scholar
  23. Echeverría DD, Volpedo AV, Mascitti VI (2007) Diet of tadpoles from a pond in Iguazu National Park, Argentina. Gayana 71:8–15Google Scholar
  24. Entsminger GL (2012) EcoSim professional: null modeling software for ecologists, v 1. Acquired Intelligence Inc., Kesey-Bear. and Pinyon Publishing, MontroseGoogle Scholar
  25. Garner TW, Perkins MW, Govindarajulu P et al (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett 2:455–459.  https://doi.org/10.1098/rsbl.2006.0494 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Garner TWJ, Walker S, Bosch J et al (2009) Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118:783–791.  https://doi.org/10.1111/j.1600-0706.2008.17202.x CrossRefGoogle Scholar
  27. Gobel N, Cortizas S, Mautone JM et al (2013) Predation of Pseudis Minuta Günther 1858, by Lethocerus annulipes (Heteroptera: Belostomatidae). Cuad Herpetol 27:63–63Google Scholar
  28. Gobel N, Laufer G, Serra WS (in press) Density, body size and diet overlap of four fish species in artificial reservoirs in the Pampas, Uruguay. North West J Zool e171401Google Scholar
  29. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  30. Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750:147–170.  https://doi.org/10.1007/s10750-014-2166-0 CrossRefGoogle Scholar
  31. Hecnar SJ, M’Closkey RT (1997) The effects of predatory fish on amphibian species richness and distribution. Biol Conserv 79:123–131.  https://doi.org/10.1016/S0006-3207(96)00113-9 CrossRefGoogle Scholar
  32. Hirai T (2004) Diet composition of introduced bullfrog, Rana catesbeiana in the Mizorogaike pond of Kyoto, Japan. Ecol Res 19:375–380.  https://doi.org/10.1111/j.1440-1703.2004.00647.x CrossRefGoogle Scholar
  33. Jancowski K, Orchard S (2013) Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver island. B C Can NeoBiota 16:17–37.  https://doi.org/10.3897/neobiota.16.3806 CrossRefGoogle Scholar
  34. Jara F, Perotti M (2010) Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644:313–324.  https://doi.org/10.1007/s10750-010-0196-9 CrossRefGoogle Scholar
  35. Kiesecker JM, Blaustein AR (1997a) Effects of introduced bullfrogs and smallmouth bass on microhabitat use, growth, and survival of sative red-legged frogs (Rana aurora). Conserv Biol 12:776–787.  https://doi.org/10.1111/j.1523-1739.1998.97125.x CrossRefGoogle Scholar
  36. Kiesecker JM, Blaustein AR (1997b) Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78:1752–1760. https://doi.org/10.1890/0012-9658(1997)078[1752:PDIROR]2.0.CO;2CrossRefGoogle Scholar
  37. Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82:1964–1970. https://doi.org/10.1890/0012-9658(2001)082[1964:PMUTDO]2.0.CO;2CrossRefGoogle Scholar
  38. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  39. Kraus F (2009) Alien reptiles and amphibians A scientific compendium and analysis. Springer, BerlinGoogle Scholar
  40. Kupferberg SJ (1997) Bullfrog (Rana catesbeiana) Invasion of a California river: the role of larval competition. Ecology 78:1736–1751. https://doi.org/10.1890/0012-9658(1997)078[1736:BRCIOA]2.0.CO;2CrossRefGoogle Scholar
  41. Lajmanovich RC (1997) Alimentación de larvas de anuros en ambientes temporales del sistema del río Paraná, Argentina. Doñana Acta Vertebr 24:191–202Google Scholar
  42. Laufer G, Gobel N (2017) Habitat degradation and biological invasions as a cause of amphibian richness loss: a case report in Aceguá, Cerro Largo, Uruguay. Phyllomedusa 16:289–293.  https://doi.org/10.11606/issn.2316-9079.v16i2p289-293 CrossRefGoogle Scholar
  43. Laufer G, Canavero A, Núñez D, Maneyro R (2008) Bullfrog (Lithobates catesbeianus) invasion in Uruguay. Biol Invasions 10:1183–1189.  https://doi.org/10.1007/s10530-007-9178-x CrossRefGoogle Scholar
  44. Laufer G, Piñeiro-Guerra JM, Pereira-Garbero R et al (2009) Distribution extension of Scinax aromothyella (Anura, Hylidae). Biota Neotrop 9:275–278.  https://doi.org/10.1590/S1676-06032009000200028 CrossRefGoogle Scholar
  45. Laufer G, Gobel N, Borteiro C, Soutullo A, Martinez-Debat C, de Sá RO (2018) Current status of American bullfrog, Lithobates catesbeianus, invasion in Uruguay and exploration of chytrid infection. Biol Invasions 20:285–291.  https://doi.org/10.1007/s10530-017-1540-z CrossRefGoogle Scholar
  46. Legendre P, Legendre LF (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  47. Leivas PT, Leivas FWT, Moura MO (2012) Diet and trophic niche of Lithobates catesbeianus (Amphibia: Anura). Zool Curitiba 29:405–412.  https://doi.org/10.1590/S1984-46702012000500003 CrossRefGoogle Scholar
  48. Leivas PT, Savaris M, Lampert S, Lucas EM (2013) Predation of Odontophrynus americanus (Anura: Odontophrynidae) by the invasive species Lithobates catesbeianus (Anura: Ranidae) in an Araucaria forest remnant in Southern Brazil. Herpetol Notes 6:603–606Google Scholar
  49. Li Y, Ke Z, Wang Y, Blackburn T (2011) Frog community responses to recent American bullfrog invasions. Curr Zool 57:83–92.  https://doi.org/10.1093/czoolo/57.1.83 CrossRefGoogle Scholar
  50. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, AucklandGoogle Scholar
  51. Maezono Y, Miyashita T (2003) Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biol Conserv 109:111–121.  https://doi.org/10.1016/S0006-3207(02)00144-1 CrossRefGoogle Scholar
  52. Meerhoff M, Clemente JM, Teixeira de Mello F, Iglesias C, Pedersen AR, Jeppesen E (2007) Can warm climate-related structure of littoral predator assemblies weaken the clear water in shallow lake? Glob Change Biol 13:1888–1897.  https://doi.org/10.1111/j.1365-2486.2007.01408.x CrossRefGoogle Scholar
  53. Moreira LFB, Machado IF, Lace ARGM, Maltchik L (2007) Calling period and reproductive modes in an anuran community of a temporary pond in southern Brazil. S Am J Herpet 2:129–135. https://doi.org/10.2994/1808-9798(2007)2[129:CPARMI]2.0.CO;2CrossRefGoogle Scholar
  54. Mugnai R, Nessimian JL, Baptista DF (2010) Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Technical Books Editora, São PauloGoogle Scholar
  55. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: Toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19.  https://doi.org/10.1023/A:1010034312781 CrossRefGoogle Scholar
  56. Pearl CA, Adams MJ, Bury RB, McCreary B (2004) Asymmetrical effects of introduced bullfrogs (Rana catesbeiana) on native ranid frogs in Oregon. Copeia 2004:11–20.  https://doi.org/10.1643/CE-03-010R2 CrossRefGoogle Scholar
  57. Polo-Cavia N, Gonzalo A, López P, Martín J (2010) Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim Behav 80:461–466.  https://doi.org/10.1016/j.anbehav.2010.06.004 CrossRefGoogle Scholar
  58. Porej D, Hetherington TE (2005) Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring of amphibian communities. Wetl Ecol Manag 13:445–455.  https://doi.org/10.1007/s11273-004-0522-y CrossRefGoogle Scholar
  59. Prigioni C, Borteiro C, Kolenc F (2011) Amphibia and reptilia, Quebrada de los Cuervos, departamento de Treinta y Tres, Uruguay. Check List 7:763–767.  https://doi.org/10.15560/11021 CrossRefGoogle Scholar
  60. Puth LM, Post DM (2005) Studying invasion: have we missed the boat? Ecol Lett 8:715–721.  https://doi.org/10.1111/j.1461-0248.2005.00774.x CrossRefGoogle Scholar
  61. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244.  https://doi.org/10.1016/j.tree.2008.02.002 CrossRefPubMedGoogle Scholar
  62. Quiroga LB, Moreno MD, Cataldo AA et al (2015) Diet composition of an invasive population of Lithobates catesbeianus (American bullfrog) from Argentina. J Nat Hist 49:1703–1716.  https://doi.org/10.1080/00222933.2015.1005711 CrossRefGoogle Scholar
  63. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna. http://www.R-project.org. Accessed 20 Feb 2018
  64. Relyea RA (2007) Getting out alive: how predators affect the decision to metamorphose. Oecologia 152:389–400.  https://doi.org/10.1007/s00442-007-0675-5 CrossRefPubMedGoogle Scholar
  65. Rodewald AD (2012) Spreading messages about invasives. Divers Distrib 18:97–99.  https://doi.org/10.1111/j.1472-4642.2011.00817.x CrossRefGoogle Scholar
  66. Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939.  https://doi.org/10.1007/s10530-005-5103-3 CrossRefGoogle Scholar
  67. Ruibal M, Laufer G (2012) Bullfrog Lithobates catesbeianus (Amphibia: Ranidae) tadpole diet: description and analysis for three invasive populations in Uruguay. Amphib Reptil 33:355–363.  https://doi.org/10.1163/15685381-00002838 CrossRefGoogle Scholar
  68. Sala OE, Chapin FS, Iii et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  69. Santana DJ, de Medeiros Magalhães F, de Avelar V, Mângia S, Amado TF, Garda AA (2016) Calls and tadpoles of the species of Pseudis (Anura, Hylidae, Pseudae). Herpetol J 26:139–151Google Scholar
  70. Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54:572–586.  https://doi.org/10.1111/j.1365-2427.2008.02134.x CrossRefGoogle Scholar
  71. Semlitsch RD, Peterman WE, Anderson TL, Drake DL, Ousterhout BH (2015) Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. Plos One 10:e0123055.  https://doi.org/10.1371/journal.pone.0123055 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Silva ETD, Reis EPD, Feio RN, Filho OPR (2009) Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais state, Brazil. South Am J Herpetol 4:286–294.  https://doi.org/10.2994/057.004.0312 CrossRefGoogle Scholar
  73. Simberloff D (2004) Community ecology: is it time to move on? (An American Society of Naturalists Presidential Address). Am Nat 163:787–799.  https://doi.org/10.1086/420777 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Simberloff D (2014) Biological invasions: what’s worth fighting and what can be won? Ecol Eng 65:112–121.  https://doi.org/10.1016/j.ecoleng.2013.08.004 CrossRefGoogle Scholar
  75. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66.  https://doi.org/10.1016/j.tree.2012.07.013 CrossRefPubMedGoogle Scholar
  76. Smith GR, Burgett AA, Temple KG, Sparks KA (2016) Differential effects of bluegill sunfish (Lepomis macrochirus) on two fish-tolerant species of tadpoles (Anaxyrus americanus and Lithobates catesbeianus). Hydrobiologia 773:77–86.  https://doi.org/10.1007/s10750-016-2680-3 CrossRefGoogle Scholar
  77. Sokal RR, Rohlf FJ (2009) Introduction to biostatistics, 2nd edn. Dover Publications, New YorkGoogle Scholar
  78. Speziale KL, Lambertucci SA, Carrete M, Tella JL (2012) Dealing with non-native species: what makes the difference in South America? Biol Invasions 14:1609–1621.  https://doi.org/10.1007/s10530-011-0162-0 CrossRefGoogle Scholar
  79. Teixeira de Mello F, González-Bergonzoni I, Loureiro M (2011) Peces de agua dulce de Uruguay. PPR-MGAP, MontevideoGoogle Scholar
  80. Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv Biol 17:38–47.  https://doi.org/10.1046/j.1523-1739.2003.02017.x CrossRefGoogle Scholar
  81. White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:443–455.  https://doi.org/10.1111/j.1366-9516.2006.00265.x CrossRefGoogle Scholar
  82. Wiser SK, Allen RB, Clinton PW, Platt KH (1998) Community structure and forest invasion by an exotic herb over 23 years. Ecology 79:2071–2081. https://doi.org/10.1890/0012-9658(1998)079[2071:CSAFIB]2.0.CO;2CrossRefGoogle Scholar
  83. Wu Z, Li Y, Wang Y, Adams MJ (2005) Diet of introduced bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan island, China. J Herpetol 39:668–674.  https://doi.org/10.1670/78-05N.1 CrossRefGoogle Scholar
  84. Ziegler L, Maneyro R (2008) Clave para la identificación de los anfibios de Uruguay (Chordata: Amphibia). Universidad de la República, MontevideoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Área Biodiversidad y ConservaciónMuseo Nacional de Historia NaturalMontevideoUruguay

Personalised recommendations