Advertisement

Aquatic Sciences

, 80:39 | Cite as

Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake

  • Nelson Javier Aranguren-Riaño
  • Jonathan B. Shurin
  • Adriana Pedroza-Ramos
  • Claudia Liliana Muñoz-López
  • Ricardo López
  • Omar Cely
Research Article

Abstract

Lago de Tota, the largest lake in Colombia, is the primary source of water for 250,000 people and a focus of regional economic activity in agriculture, aquaculture, and tourism. Recently, agencies and stakeholders report a shift from the naturally oligotrophic state toward eutrophy. However, the relative contributions of different inputs, including agricultural runoff, aquaculture and municipal wastewaters are unknown, hampering efforts to mitigate nutrient loading. We examined spatial and temporal variation in the trophic state of the lake over one year, as well as stable C and N isotopic profiles of aquatic producers and consumers in relation to two main potential sources (fertilizer and trout feed). We found that Lago de Tota is moderately eutrophic (average chlorophyll-a: 6.4 µg/L, TN: 1.5 mg/L and TP: 0.06 mg/L) with a 32% reduction of transparency over the last 15 years. δ15N and δ13C of aquatic organisms and surface sediments were enriched relative to prehistoric sediments, indicating that human sources dominate the C and N cycles of the lake. δ15N of macrophytes (15.7‰), particulate organic matter (12.5‰), and invertebrates (20.2‰) were enriched relative to trout food (4.6‰), but similar to chicken manure (13.7‰), suggesting that farming in the watershed may be a more important source of N than aquaculture. Our results indicate that Lago de Tota is on a trajectory toward eutrophication with potentially severe consequences for water resources in a rapidly developing mountain region.

Keywords

Eutrophication Water quality Aquaculture Stable isotopes Colombia 

Notes

Acknowledgements

The Corpoboyacá and Fulbright Colombia provided funding for our project. We thank Alejandra Jiménez and Nidia Gil for helpful assistance in field.

References

  1. Altabet MA, Francois R, Murray DW, Prell WL (1995) Climate-related variations in denitrification in the arabian sea from sediment n-15/n-14 ratios. Nature 373:506–509CrossRefGoogle Scholar
  2. APHA (1976) Standard methods for the examination of water and wastewater. In. D.C, American Public Health Association WashingtonGoogle Scholar
  3. Archundia D, Duwig C, Spadini L, Uzu G, Guedron S, Morel MC, Cortez R, Ramos OR, Chincheros J, Martins JMF (2017) How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Water Air and Soil Pollution, 228Google Scholar
  4. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci USA 93:10844–10847CrossRefGoogle Scholar
  5. Cañon J, Valdes J (2011) Assessing the influence of global climate and anthropogenic activities on the water balance of an Andean Lake. J Water Resour Protect 3:883–891CrossRefGoogle Scholar
  6. Cañón J, Rodríguez C (2002) Análisis isotópico en el lago Tota. XV Seminario Nacional de Hidráulica e Hidrología. In: Medellin, ColombiaGoogle Scholar
  7. CAR (1983) Informe sobre el Lago de Tota Consultado de Richard Vollenweider. In: Corporación Autónoma Regional CAR y Organización Panamericana de la Salud. Bogotá, Colombia Bogota, Colombia, p 26 ppGoogle Scholar
  8. Cardozo AYV, Gomes DF, da Silva EM, Duque SRE, Rangel JOC, Sifeddine A, Turcq B, Albuquerque ALS (2014) Holocene paleolimnological reconstruction of a high altitude Colombian tropical lake. Palaeogeogr Palaeoclimatol Palaeoecol 415:127–136CrossRefGoogle Scholar
  9. Carlson RE (1977) Trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  11. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771CrossRefGoogle Scholar
  12. Carpenter SR, Brock WA, Folke C, van Nes EH, Scheffer M (2015) Allowing variance may enlarge the safe operating space for exploited ecosystems. Proc Natl Acad Sci USA 112:14384–14389CrossRefGoogle Scholar
  13. Catalan J, Donato Rondón JC (2016) Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J Limnol 75:215–234CrossRefGoogle Scholar
  14. Cole ML, Kroeger KD, McClelland JW, Valiela I (2005) Macrophytes as indicators of land-derived wastewater: application of a delta N-15 method in aquatic systems. Water Resources Research 41Google Scholar
  15. Duque SR, Donato-Rondón J (1992) Biología y Ecología del fitoplancton de las aguas dulces en Colombia. Cuadernos Divulgativos 35:1–21Google Scholar
  16. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  17. Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223CrossRefGoogle Scholar
  18. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls A, B, C1 and C2 in higher-plants, algae and natural phytoplankton. Biochemie Physiologie Der Pflanzen 167:191–194CrossRefGoogle Scholar
  19. Jørgensen S, Tundisi J, Tundisi M (2013) Handbook of inland aquatic ecosystem management. CRC Press, Boca RatonGoogle Scholar
  20. Kruk C, Huszar VLM, Peeters E, Bonilla S, Costa L, Lurling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627CrossRefGoogle Scholar
  21. Lewis WM (1987) Tropical limnology. Annu Rev Ecol Syst 18:159–184CrossRefGoogle Scholar
  22. Lindeman R (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  23. Löffler H (1962) The limnology of tropical high-mountain lakes. Internationale Vereinigung fuer Theoretische Angewandte Limnologie Verhandlungen 15:176–193Google Scholar
  24. Moore JW, Lambert TD, Heady WN, Honig SE, Osterback AMK, Phillis CC, Quiros AL, Retford NA, Herbst DB (2014) Anthropogenic land-use signals propagate through stream food webs in a California, USA, watershed. Limnologica 46:124–130CrossRefGoogle Scholar
  25. Muñoz-López CL, Aranguren-Riano NJ, Duque SR (2017) Functional morphology of phytoplankton in a tropical high mountain lake: Tota Lake (Boyaca-Colombia). Revista De Biologia Tropical 65:669–683Google Scholar
  26. Oczkowski A, Markham E, Hanson A, Wigand C (2014) Carbon stable isotopes as indicators of coastal eutrophication. Ecol Appl 24:457–466CrossRefGoogle Scholar
  27. Parnell A (2016) Package ‘simmr’: a stable isotope mixing model. InGoogle Scholar
  28. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835CrossRefGoogle Scholar
  29. Post DM (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  30. Rangel O, Aguirre J (1983) Comunidades acuáticas altoandinas—I. Vegetación sumergida y de ribera en el lago de Tota. Boyacá Colombia Caldasia 65:719–742Google Scholar
  31. Sickman JO, Melack JM, Clow DW (2003) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr 48:1885–1892CrossRefGoogle Scholar
  32. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207CrossRefGoogle Scholar
  33. Toledo APd, Talarico M, García E (1983) A aplicacao de modelos simplificados para avaliacao do processo de eutrofizacao em lagos e reservatorios tropicais. In. CETESB Sao PauloGoogle Scholar
  34. Utermöhl H (1958) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Mitteilungen des Internationalen Limnologie 9:1–38Google Scholar
  35. Voss M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59:35–49CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Unidad de Ecología en Sistemas Acuáticos UDESA, Universidad Pedagógica y Tecnológica de ColombiaTunjaColombia
  2. 2.Section of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaUSA
  3. 3.Corporación Autónoma Regional de Boyacá, CorpoboyacáTunjaColombia

Personalised recommendations