Advertisement

Aquatic Sciences

, 80:29 | Cite as

Spatio-temporal variability and controls on methane and nitrous oxide in the Guadalquivir Estuary, Southwestern Europe

  • I. Emma Huertas
  • Susana Flecha
  • Gabriel Navarro
  • Fiz F. Perez
  • Mercedes de la Paz
Research Article

Abstract

Estuaries are significant methane (CH4) and nitrous oxide (N2O) emitters, although dynamics of both greenhouse gases in these ecosystems are regulated by complex processes. In this work, we aimed at characterizing the spatio-temporal distribution of CH4 and N2O in the Guadalquivir river estuary (SW Spain), the southernmost European estuary. During eight sampling cruises conducted between 2016 and 2017, surface water CH4 and N2O concentrations were measured along the salinity gradient of the estuary by using static-head space equilibration gas chromatography. The CH4 and N2O saturation ranges over the estuarine transect were 520–30,800% (average 2285%) and 40–390% (average 183%), respectively and air–water fluxes ranged from 13 to 1000 µmol m− 2 day− 1(average 66.2 µmol m− 2 day− 1) for CH4 and from − 7 to 35 µmol m− 2 day− 1 (average 8.5 µmol m− 2 day− 1) for N2O. A slight increase in the emissions was detected upstream and no seasonal trends were observed. Mixing between freshwater and oceanic waters influenced biogeochemistry of estuarine waters, affecting CH4 and N2O fluxes. In order to identify potential sources of CH4 and N2O, biogeochemical parameters involved in the formation pathways of both gases, such as salinity, dissolved oxygen, nutrients and organic matter were analyzed. Results suggested that sulfate inhibition and microbial oxidation played a relevant role in dissolved CH4 accumulation in the water column whereas associations found between N2O, nitrate and oxygen indicated that nitrification was a major source of this gas. Therefore, the influence of the tidal-fluvial interaction on ecosystem metabolism regulates trace gas dynamics in the Guadalquivir estuary.

Keywords

Estuary Guadalquivir Methane Nitrification Nitrous oxide 

Notes

Acknowledgements

This research was funded by the project 1539/2015 from the Spanish Ministry for Agriculture, Food and Environment. The authors are indebted to María Ferrer-Marco, Marta Riera and Antonio Moreno for support in the field work and samples analysis and Manuel Arjonilla for nutrients analysis.

Author contributions

IEH conceived the study, contributed to data analysis and interpretation and draft the manuscript. GN and FFP contributed to data analysis interpretation and critical discussion. SF and MdP contributed to analytical design, data calculation and discussion.

References

  1. Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181CrossRefGoogle Scholar
  2. Abril G, Commarieu M-V, Guerin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnology oceanography 52(1):470–475CrossRefGoogle Scholar
  3. Álvarez-Salgado XA, Miller AEJ (1998) Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem 62(3–4):325–333CrossRefGoogle Scholar
  4. Bakker DC, Bange HW, Gruber N, Johannessen T, Upstill-Goddard RC, Borges AV, Delille B, Löscher CR, Naqvi SWA, Omar AM (2014) Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate, ocean–atmosphere Interactions of gases and particles, edited, pp 113–169, SpringerGoogle Scholar
  5. Bange HW (2006) Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70(3):361–374CrossRefGoogle Scholar
  6. Barnes J, Upstill-Goddard RC (2011) N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters. J Geophys Res Biogeosci 116(G1):G01006CrossRefGoogle Scholar
  7. Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane emissions along a salt-marsh salinity gradient. Biogeochemistry 4:183–202CrossRefGoogle Scholar
  8. Bartlett KB, Crill PM, Bonassi JA, Richey JE, Harriss RC (1990) Methane flux from the Amazon River floodplain: emissions during rising water. J Geophys Res Atmos 95(D10):16773–16788CrossRefGoogle Scholar
  9. Baulch HM, Schiff SL, Maranger R, Dillon PJ (2011) Diffusive and ebullitive transport of methane and n itrous oxidefrom streams: Are bubble-mediated fluxes important? J Geophys Res 116:G04028.  https://doi.org/10.1029/2011JG001656 CrossRefGoogle Scholar
  10. Beaulieu J, Shuster W, Rebholz J (2010) Nitrous oxide emissions from a large, impounded river: the Ohio river. Environ Sci Technol 44(19):7527–7533CrossRefPubMedGoogle Scholar
  11. Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1. Limnol Oceanogr 29(3):620–632CrossRefGoogle Scholar
  12. Borges AV, Abril G (2011) Carbon Dioxide and Methane Dynamics in Estuaries. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 119–161CrossRefGoogle Scholar
  13. Borges A, Abril G, Darchambeau F, Teodoru CR, Deborde J, Vidal LO, Lambert T, Bouillon S (2015a) Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers. Sci Rep 5:15614CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borges A, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C (2015b) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8(8):637–642CrossRefGoogle Scholar
  15. Borges A, Champenois W, Gypens N, Delille B, Harlay J (2016) Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908CrossRefPubMedPubMedCentralGoogle Scholar
  16. Borges AV, Darchambeau F, Lambert T, Bouillon S, Morana C, Brouyère S, Hakoun V, Jurado A, Tseng H-C, Descy J-P, Roland FAE (2018) Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci Total Environ 610–611:342–355CrossRefPubMedGoogle Scholar
  17. Borges AV, G Speeckaert, W Champenois, M.I. Scranton & N Gypens (2017) Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea, Ecosystems.  https://doi.org/10.1007/s10021-017-0171-7
  18. Bouillon S, Yambélé A, Spencer R, Gillikin D, Hernes P, Six J, Merckx R, Borges A (2012) Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 9:2045–2062CrossRefGoogle Scholar
  19. Brase L, Bange HW, Lendt R, Sanders T, Dähnke K (2017) High resolution measurements of nitrous oxide (N2O) in the Elbe Estuary. Front Mar Sci 4:162CrossRefGoogle Scholar
  20. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19(5):1325–1346CrossRefGoogle Scholar
  21. Caballero I, Ruiz J, Navarro G (2018) Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system. Int J Appl Earth Obs Geoinf 68:31–41CrossRefGoogle Scholar
  22. Cai W-J, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the Estuarine waters of the Satilla and Altamaha rivers, Georgia. Limnol Oceanogr 43(4):657–668CrossRefGoogle Scholar
  23. Ciais P et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF (ed) et al Climate Change 2013: the physical science basis. Contribution of WorkingGroup I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, pp 465–570Google Scholar
  24. Codispoti LA (2010) Interesting times for marine N2O. Science 327(5971):1339–1340CrossRefPubMedGoogle Scholar
  25. Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G (2016) Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol Oceanogr 61:S238–S252.  https://doi.org/10.1002/lno.10298 CrossRefGoogle Scholar
  26. de Bie MJ, Middelburg JJ, Starink M, Laanbroek HJ (2002) Factors controlling nitrous oxide at the microbial community and estuarine scale. Mar Ecol Prog Ser 240:1–9CrossRefGoogle Scholar
  27. de la Paz M, Gomez-Parra A, Forja J (2007) Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). J Mar Syst 68:265–277CrossRefGoogle Scholar
  28. de la Paz M, Huertas IE, Flecha S, Ríos AF, Pérez FF (2015) Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: air–sea fluxes and inter-basin exchange. Prog Oceanogr 138(Part A):18–31CrossRefGoogle Scholar
  29. Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4—in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22(2):113–127CrossRefGoogle Scholar
  30. Díez-Minguito M, Baquerizo A, Ortega-Sánchez M, Navarro G, Losada MA (2012) Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation. J Geophys Res Oceans 117(C3):C03019CrossRefGoogle Scholar
  31. Díez-Minguito M, Contreras E, Polo MJ, Losada MA (2013) Spatio-temporal distribution, along-channel transport, and post-riverflood recovery of salinity in the Guadalquivir estuary (SW Spain). J Geophys Res Oceans 118(5):2267–2278CrossRefGoogle Scholar
  32. Ferrón S, Ortega T, Gómez-Parra A, Forja JM (2007) Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain). J Mar Syst 66(1–4):244–257CrossRefGoogle Scholar
  33. Ferrón S, Ortega T, Forja JM (2010a) Nitrous oxide distribution in the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Mar Chem 119(1–4):22–32CrossRefGoogle Scholar
  34. Ferrón S, Ortega T, Forja JM (2010b) Temporal and spatial variability of methane in the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). J Sea Res 64(3):213–223CrossRefGoogle Scholar
  35. Flecha S, Huertas IE, Navarro G, Morris E, Ruiz J (2015) Air–water CO2 fluxes in a highly heterotrophic Estuary. Estuaries Coasts 38(6):2295–2309CrossRefGoogle Scholar
  36. Garnier J, Cébron A, Tallec G, Billen G, Sebilo M, Martinez A (2006) Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry 77(3):305–326CrossRefGoogle Scholar
  37. Gelesh L, Marshall K, Boicourt W, Lapham L (2016) Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay. Limnol Oceanogr 61:S253–S266.  https://doi.org/10.1002/lno.10272 CrossRefGoogle Scholar
  38. Gonçalves C, Brogueira MJ, Camões MF (2010) Seasonal and tidal influence on the variability of nitrous oxide in the Tagus estuary, Portugal. Sci Marina 74(S1):57–66CrossRefGoogle Scholar
  39. Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108(49):19657–19661CrossRefPubMedGoogle Scholar
  40. Guérin F, Abril G, Tremblay A, Delmas R (2008) Nitrous oxide emissions from tropical hydroelectric reservoirs. Geophys Res Lett 35(6):L06404.  https://doi.org/10.1029/2007GL03305 CrossRefGoogle Scholar
  41. Hamdan LJ, Wickland KP (2016) Methane emissions from oceans, coasts, and freshwater habitats: new perspectives and feedbacks on climate. Limnol Oceanogr 61:S3–S12.  https://doi.org/10.1002/lno.10449 CrossRefGoogle Scholar
  42. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshof K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. WILEY-VCH, Weilheim, pp 159–228CrossRefGoogle Scholar
  43. Havlicek LL, Peterson NL (1977) Effect of the violation of assumptions upon significance levels of the pearson r. Psychol Bull 84(2):373–377CrossRefGoogle Scholar
  44. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26CrossRefGoogle Scholar
  45. Huertas IE, Flecha S, Figuerola J, Costas E, Morris EP (2017a) Effect of hydroperiod on CO2 fluxes at the air-water interface in the Mediterranean coastal wetlands of Doñana. J Geophys Res Biogeosci.  https://doi.org/10.1002/2017JG003793 CrossRefGoogle Scholar
  46. Huertas IE, de la Paz M, Flecha S, Perez FF (2017b) Methane and nitrous oxide air-water fluxes from Doñana wetlands: spatial and temporal variability of emissions. In: Annual meeting of Society of Wetlands Scientists, San Juan, Puerto RicoGoogle Scholar
  47. Hurkuck M, Althoff F, Jungkunst HF, Jugold A, Keppler F (2012) Release of methane from aerobic soil: an indication of a novel chemical natural process? Chemosphere 86(6):684–689CrossRefPubMedGoogle Scholar
  48. Jiang LQ, Cai WJ, Wang YC (2018) A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol Oceanogr 53:2603–2615.  https://doi.org/10.4319/lo.2008.53.6.2603 CrossRefGoogle Scholar
  49. Keppler F, Hamilton JT, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187CrossRefPubMedGoogle Scholar
  50. Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler J-P (2009) Methane formation in aerobic environments. Environ Chem 6(6):459–465CrossRefGoogle Scholar
  51. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813CrossRefGoogle Scholar
  52. Klüber HD, Conrad R (1998) Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol Ecol 25(4):331–339CrossRefGoogle Scholar
  53. Koné YJM, Abril G, Delille B, Borges AV (2010) Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100(1):21–37CrossRefGoogle Scholar
  54. Lapierre J-F, del Giorgio PA (2012) Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes. J Geophys Res Biogeosci 117:G03015.  https://doi.org/10.1029/2012JG001945 CrossRefGoogle Scholar
  55. Lewis E, Wallace D, Allison LJ (1998), Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of EnergyGoogle Scholar
  56. Losada MA, Díez-Minguito M, Reyes-Merlo M (2017) Tidal-fluvial interaction in the Guadalquivir River Estuary: spatial and frequency-dependent response of currents and water levels. J Geophys Res Oceans 122(2):847–865CrossRefGoogle Scholar
  57. Maher DT, Cowley K, Santos IR, Macklin P, Eyre BD (2015) Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements. Mar Chem 168:69–79CrossRefGoogle Scholar
  58. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, De Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59(1–2):95–119CrossRefGoogle Scholar
  59. Mintrop L, Pérez FF, González-Dávila M, Santana-Casiano JM, Körtzinger A (2000) Alkalinity determination by potentiometry: Intercalibration using three different methods. Cienc Mar 26(1):23–27CrossRefGoogle Scholar
  60. Murray RH, Erler DV, Eyre BD (2015) Nitrous oxide fluxes in estuarine environments: response to global change. Glob Change Biol 21(9):3219–3245CrossRefGoogle Scholar
  61. Musenze RS, Werner U, Grinham A, Udy J, Yuan Z (2014) Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Sci Total Environ 472:719–729CrossRefPubMedGoogle Scholar
  62. Myhre G et al (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740Google Scholar
  63. Naqvi S, Bange H, Farías L, Monteiro P, Scranton M, Zhang J (2010) Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7(7):2159–2190CrossRefGoogle Scholar
  64. Nisbet E, Dlugokencky E, Manning M, Lowry D, Fisher R, France J, Michel S, Miller J, White J, Vaughn B (2016) Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob Biogeochem Cycle 30(9):1356–1370CrossRefGoogle Scholar
  65. Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842.  https://doi.org/10.1007/s13157-011-0197-0 CrossRefGoogle Scholar
  66. Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. science 326(5949):123–125CrossRefPubMedGoogle Scholar
  67. Raymond P, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317CrossRefGoogle Scholar
  68. Richey JE, Devol AH, Wofsy SC, Victoria R, Riberio MN (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol Oceanogr 33(4):551–561CrossRefGoogle Scholar
  69. Ruiz J, Polo MJ, Díez-Minguito M, Navarro G, Morris EP, Huertas IE, Caballero E, Contreras, Losada MA (2015) The Guadalquivir estuary: a hot spot for environmental and human conflicts. In: Environmental management and governance. Springer, edited, pp 199–232Google Scholar
  70. Ruiz J, Macias D, andG. Navarro(2017) Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir Estuary. Cont Shelf Res.  https://doi.org/10.1016/j.csr.2017.09.002 CrossRefGoogle Scholar
  71. Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cycles 13(2):463–474CrossRefGoogle Scholar
  72. Saunois M et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751CrossRefGoogle Scholar
  73. Sawakuchi HO, Bastviken D, Sawakuchi AO, Krusche AV, Ballester MV, Richey JE (2014) Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Glob Change Biol 20(9):2829–2840CrossRefGoogle Scholar
  74. Schade JD, Bailio J, McDowell WH (2016) Greenhouse gas flux from headwater streams in New Hampshire, USA: patterns and drivers. Limnol Oceanogr 61:S1CrossRefGoogle Scholar
  75. Schaefer H, Fletcher SEM, Veidt C, Lassey KR, Brailsford GW, Bromley TM, Dlugokencky EJ, Michel SE, Miller JB, Levin I (2016) A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352(6281):80–84CrossRefPubMedGoogle Scholar
  76. Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115(4):451–460CrossRefGoogle Scholar
  77. Silvennoinen H, Liikanen A, Rintala J, Martikainen PJ (2008) Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90(2):193–208CrossRefGoogle Scholar
  78. Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res Oceans 93(C12):15467–15472CrossRefGoogle Scholar
  79. Smith LK, Lewis WM, Chanton JP, Cronin G, Hamilton SK (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51(2):113–140CrossRefGoogle Scholar
  80. Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86(2):146–171CrossRefGoogle Scholar
  81. Stocker TF et al (2013) Technical Summary. In: Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth. Cambridge University Press, Cambridge, pp 33–115Google Scholar
  82. Sturm K, Grinham A, Werner U, Yuan Z (2016) Sources and sinks of methane and nitrous oxide in the subtropical Brisbane River estuary, South East Queensland, Australia, Estuarine. Coastal Shelf Sci 168:10–21CrossRefGoogle Scholar
  83. Thompson RL, Sasakawa M, Machida T, Aalto T, Worthy D, Lavric JV, Myhre CL, Stohl A (2017) Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos Chem Phys 17:3553–3572CrossRefGoogle Scholar
  84. Upstill-Goddard RC, Barnes J (2016) Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem 180:14–23CrossRefGoogle Scholar
  85. Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJ (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Glob Biogeochem Cycle 14(4):1205–1217CrossRefGoogle Scholar
  86. Upstill-Goddard RC, Salter ME, Mann PJ, Barnes J, Poulsen J, Dinga B, Fiske GJ, Holmes RM (2017) The riverine source of CH4 and N2O from the Republic of Congo, western Congo Basin. Biogeosciences 14(9):2267CrossRefGoogle Scholar
  87. Von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers, Glob Biogeochem Cycle 21(2)Google Scholar
  88. Wanninkhof R (1992) Relationship between wind speed and gas exchange. J geophys Res 97(25):7373–7382CrossRefGoogle Scholar
  89. Wilde HPJ, de Bie MJM (2000) Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere. Mar Chem 69:203–216CrossRefGoogle Scholar
  90. Zhang G, Zhang J, Ren J, Li J, Liu S (2008) Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer. Mar Chem 110(1):42–55CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias Marinas de Andalucía, (CSIC)CádizSpain
  2. 2.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  3. 3.Centro Oceanográfico de A Coruña (IEO)A CoruñaSpain

Personalised recommendations