Aquatic Sciences

, 80:17 | Cite as

Variance partitioning of deconstructed tropical diatom communities in reservoirs cascade

  • Gisele C. Marquardt
  • André Andrian Padial
  • Carlos E. de M. Bicudo
Research Article

Abstract

We used variation partitioning to evaluate significance of local environment, spatial structure and hydrological connectivity in the diatom community variation in phytoplankton and superficial sediments of six reservoirs of southeast Brazil. Common and rare diatom species were represented by different data sets, according to the species relative abundance and frequency of occurrence. To clarify the connectivity effect on the metacommunity organization, analyses were performed with and without a hydrological connectivity matrix as predictor. Results for rare and common species were similar, but explanation power depended on the habitat and the climatic season. The hydrological connectivity predictor proved to play an important role toward explaining the diatom metacommunity dynamics. Consequently, this landscape feature should not be neglected in ecological models of managed rivers.

Keywords

Connectivity Occurrence frequency Rare species Relative abundance Reservoir 

Notes

Acknowledgements

This study was carried out within the framework of the AcquaSed Project supported by funds from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant No. 2009/53898-9), and was undertaken as part of GCM thesis at the Instituto de Botânica, São Paulo, Brazil (FAPESP Fellowship No. 2013/10314-2). CEMB thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for Research Fellowship (No. 305031/2016-3). We deeply appreciate the valuable assistance of the personnel from Votorantim Energia for their logistical support during the fieldwork. We are also grateful to Prof. William de Queiróz (Universidade de Guarulhos, Geoprocessing Laboratory) for the study area illustration.

References

  1. Alahuhta J, Johnson LB, Olker J, Heino J (2014) Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecol Complex 20:61–68.  https://doi.org/10.1016/j.ecocom.2014.08.003 CrossRefGoogle Scholar
  2. APHA—American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  3. Arnan X, Cerdá X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. Peer J 3:e1241.  https://doi.org/10.7717/peerj.1241 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arscott DB, Tockner K, Ward JV (2003) Spatio-temporal patterns of benthic invertebrates along the continuum of a braided Alpine river. Arch Hydrobiol 158(4):431–460CrossRefGoogle Scholar
  5. Arthington AH, Balcombe SR, Wilson GA, Thoms MC, Marshall J (2005) Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia. Mar Freshw Res 56(1):25–35.  https://doi.org/10.1071/MF04111 CrossRefGoogle Scholar
  6. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene paleoecology and paleohydrology. Wiley, London, pp 527–570Google Scholar
  7. Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ (2013) Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc B 280(1771):20131760.  https://doi.org/10.1098/rspb.2013.1760 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bicudo DC (1990) Considerações sobre metodologias de contagem de algas do perifíton. Acta Limnol Bras 3:459–475Google Scholar
  9. Blanchet FG, Legendre P, Borcard D (2008a) Modelling directional spatial processes in ecological data. Ecol Modell 215(4):325–336.  https://doi.org/10.1016/j.ecolmodel.2008.04.001 CrossRefGoogle Scholar
  10. Blanchet FG, Legendre P, Bocard D (2008b) Forward selection of explanatory variables. Ecology 89(9):2623–2632.  https://doi.org/10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  11. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153(1–2):51–68.  https://doi.org/10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  12. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055CrossRefGoogle Scholar
  13. Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753(1):233–241CrossRefGoogle Scholar
  14. Cao Y, Larsen DP (2001) Rare species in multivariate analysis for bioassessment: some considerations. J N Am Benthol Soc 20:144–153CrossRefGoogle Scholar
  15. Capers RS, Selsky R, Bugbee GJ (2010) The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw Biol 55(5):952–966.  https://doi.org/10.1111/j.1365-2427.2009.02328.x CrossRefGoogle Scholar
  16. Chave J, Leigh EG (2002) A spatially explicit neutral model of beta-diversity in tropical forests. Theor Popul Biol 62:153–168.  https://doi.org/10.1006/tpbi.2002.1597 CrossRefPubMedGoogle Scholar
  17. Checon HH, Amaral ACZ (2016) Taxonomic sufficiency and the influence of rare species on variation partitioning analysis of a polychaete community. Mar Ecol 38(1):e12384.  https://doi.org/10.1111/maec.12384 CrossRefGoogle Scholar
  18. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182.  https://doi.org/10.1111/j.1461-0248.2005.00820.x CrossRefPubMedGoogle Scholar
  19. Dray S (2007) Pack for: forward selection with permutation. R package version 0.99.467. http://pbil.univ-lyon1.fr/members/dray/software.php. Accessed 18 Apr 2017
  20. Freimann R, Bürgmann H, Findlay SEG, Robinson CT (2015) Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains. Front Microbiol 1221(6):1–15.  https://doi.org/10.3389/fmicb.2015.01221 Google Scholar
  21. Gandon S, Michalakis Y (2001) Multiple causes of the evolution of dispersal. Dispersal. Oxford University Press, New YorkGoogle Scholar
  22. Gaston KJ (1994) Rarity. Chapman and Hall, LondonCrossRefGoogle Scholar
  23. Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci USA 101(20):7651–7656.  https://doi.org/10.1073/pnas.0400814101 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gillet ND, Pan Y, Manoylov KM, Stancheva R, Weilhoefer CL (2011) The potential indicator value of rare taxa richness in diatom-based stream bioassessment. J Phycol 47(3):471–482.  https://doi.org/10.1111/j.1529-8817.2011.00993.x CrossRefGoogle Scholar
  25. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, ChichesterGoogle Scholar
  26. Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433CrossRefGoogle Scholar
  27. Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. ‎Ecol Evol 3(13):4473–4487CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hassan GS, Espinosa MA, Isla FI (2008) Fidelity of dead diatom assemblages in estuarine sediments: how much environmental information is preserved? Palaios 23:112–120.  https://doi.org/10.2110/palo.2006.p06-122r CrossRefGoogle Scholar
  29. Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60(5):845–869.  https://doi.org/10.1111/fwb.12533 CrossRefGoogle Scholar
  30. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton monographs in population biology. Princeton University Press, Princeton, NJGoogle Scholar
  31. James FC, Johnston RF, Warner NO, Niemi G, Boecklen W (1984) The Grinnellian niche of the wood thrush. Am Nat 124:17–47CrossRefGoogle Scholar
  32. Jetz W, Rahbek C (2002) Geographic range size and determinants of Avian species richness. Science 297(5586):1548–1551.  https://doi.org/10.1126/science.1072779 CrossRefPubMedGoogle Scholar
  33. Jocque M, Field R, Brendonck L, Meester L (2010) Climatic control of dispersal–ecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? Global Ecol Biogeogr 19(2):244–252.  https://doi.org/10.1111/j.1466-8238.2009.00510.x CrossRefGoogle Scholar
  34. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. ‎J Evol Biol 15(2):173–190.  https://doi.org/10.1046/j.1420-9101.2002.00377.x CrossRefGoogle Scholar
  35. Lamparelli MC (2004) Graus de trofia em corpos d’água do Estado de São Paulo: Avaliação dos métodos de monitoramento. Dissertation, Universidade de São PauloGoogle Scholar
  36. Lavoie I, Dillon PJ, Campeau S (2009) The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecol Indic 9(2):213–225.  https://doi.org/10.1016/j.ecolind.2008.04.003 CrossRefGoogle Scholar
  37. Leibold MA (1995) The Niche concept revisited: mechanistic models and community context. Ecology 76(5):1371–1382.  https://doi.org/10.2307/1938141 CrossRefGoogle Scholar
  38. Liu J, Soininen J, Han B, Declerck SAJ (2013) Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. J Biogeogr 40(12):2238–2248CrossRefGoogle Scholar
  39. Mann DG, Vanormelingen P (2013) An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species. J Eukaryot Microbiol 60(4):414–420.  https://doi.org/10.1111/jeu.12047 CrossRefPubMedGoogle Scholar
  40. Marquardt GM, Bicudo CEM, Ludwig TAV, Ector L, Wetzel CE (in press) Diatom assemblages (Bacillariophyta) in six tropical reservoirs from southeast Brazil: species composition and spatial and temporal variation patternsGoogle Scholar
  41. Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24(4):869–878.  https://doi.org/10.1111/j.0272-4332.2004.00485.x CrossRefPubMedGoogle Scholar
  42. Moritz C, Meynard CN, Devictor V, Guizien K, Labrune C, Guarini JM, Mouquet N (2013) Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122(10):1401–1410.  https://doi.org/10.1111/j.1600-0706.2013.00377.x Google Scholar
  43. Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162(5):544–557CrossRefPubMedGoogle Scholar
  44. Nijboer RC, Schmidt-Kloiber A (2004) The effect of excluding taxa with low abundances or taxa with small distribution ranges on ecological assessment. Hydrobiologia 516(1–3):347–363CrossRefGoogle Scholar
  45. O’Hare MT, Gunn IDM, Chapman DS, Dudley BJ, Purse BV (2012) Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. ‎Divers Distrib 18(6):603–614.  https://doi.org/10.1111/j.1472-4642.2011.00860.x CrossRefGoogle Scholar
  46. Oksanen J, Blanchet GF, Kindt R, Legendre P, O’Hara RB, Gavin L, Simpson PS, Henry M, Stevens H, Wagner H (2016) Peter R. vegan: community ecology package. R package version 2.3-5. https://CRAN.R-project.org/package=vegan. Accessed 15 Aug 2016
  47. Östergård H, Ehrlén J (2005) Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111(1):39–46.  https://doi.org/10.1111/j.0030-1299.2005.13902.x CrossRefGoogle Scholar
  48. Padial AA, Ceschin F, Declerck SAJ, Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Rodrigues LC, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10):e111227.  https://doi.org/10.1371/journal.pone.0111227 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pappas JL, Stoermer EF (1996) Quantitative method for determining a representative algal sample count. J Phycol 32(4):693–696.  https://doi.org/10.1111/j.0022-3646.1996.00693.x CrossRefGoogle Scholar
  50. Penha J, Landeiro VL, Ortega JCG, Mateus L (2017) Interchange between flooding and drying, and spatial connectivity control the fish metacommunity structure in lakes of the Pantanal wetland. Hydrobiologia 797(1):115–126CrossRefGoogle Scholar
  51. Potapova MG, Charles DF (2002) Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J Biogeogr 29(2):167–187.  https://doi.org/10.1046/j.1365-2699.2002.00668.x CrossRefGoogle Scholar
  52. Potapova M, Charles DF (2004) Potential use of rare diatoms as environmental indicators in USA rivers. Proceedings of the 17th international diatom symposium. Biopress Ltd., BristolGoogle Scholar
  53. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/
  54. Rabinowitz D (1981) Seven forms of rarity. The biological aspects of rare plant conservation. Wiley, ChichesterGoogle Scholar
  55. Reche I, Pulido-Villena E, Morales-Baquesro R, Csamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86(7):1715–1722.  https://doi.org/10.1890/04-1587 CrossRefGoogle Scholar
  56. Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3:141–159Google Scholar
  57. Reynolds CS (1998) What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369:11–26CrossRefGoogle Scholar
  58. Rodil IF, Lucena-Moya P, Jokinen H, Ollus V, Wennhage H, Villnäs A, Norkko A (2017) The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates. PLoS One 12(2):e0172160.  https://doi.org/10.1371/journal.pone.0172160Root1988 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Root T (1988) Energy constraints on avian distributions and abundances. Ecology 69:330–339CrossRefGoogle Scholar
  60. Royo AA, Ristau TE (2012) Stochastic and deterministic processes regulate spatio-temporal variation in seed bank diversity. J Veg Sci 24(4):724–734.  https://doi.org/10.1111/jvs.12011 CrossRefGoogle Scholar
  61. Sartory DP, Grobbelaar JU (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114(3):177–187.  https://doi.org/10.1007/BF00031869 CrossRefGoogle Scholar
  62. Siqueira T, Bini LM, Roque FB, Couceiro SRM, Trivinho-Strixino S, Cottenie K (2012) Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35(2):183–192CrossRefGoogle Scholar
  63. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123.  https://doi.org/10.1111/j.1461-0248.2007.01107.x CrossRefPubMedGoogle Scholar
  64. Soininen J (2007) Environmental and spatial control of freshwater diatoms—a review. Diatom Res 22(2):473–490CrossRefGoogle Scholar
  65. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30(1):3–12.  https://doi.org/10.1111/j.0906-7590.2007.04817.x CrossRefGoogle Scholar
  66. Spitale D (2012) A comparative study of common and rare species in spring habitats. Ecoscience 19(1):80–88.  https://doi.org/10.2980/19-1-3435 CrossRefGoogle Scholar
  67. Székely AJ, Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol 87(1):102–112.  https://doi.org/10.1111/1574-6941.12195 CrossRefPubMedGoogle Scholar
  68. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. PNAS 101(30):10854–10861.  https://doi.org/10.1073/pnas.0403458101 CrossRefPubMedPubMedCentralGoogle Scholar
  69. van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM, Schwenk K, Zwart G, Degans H, Vyverman W, Meester L (2007) The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. PNAS 104(51):20404–20409.  https://doi.org/10.1073/pnas.0707200104 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vanormelingen P, Verleyen E, Vyverman W (2008) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers Conserv 17:393–405.  https://doi.org/10.1007/S10531-007-9257-4 CrossRefGoogle Scholar
  71. Vilmi A, Karjalainen SM, Hellsten S, Heino J (2016) Bioassessment in a metacommunity context: are diatom communities structured solely by species sorting? Ecol Indic 62:86–94.  https://doi.org/10.1016/j.ecolind.2015.11.043 CrossRefGoogle Scholar
  72. Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4(2):103–113.  https://doi.org/10.1016/j.polar.2010.03.006 CrossRefGoogle Scholar
  73. Wetzel CE, Bicudo DC, Ector L, Lobo EA, Soininen J, Landeiro VL, Bini LM (2012) Distance decay of similarity in neotropical diatom communities. PLoS One 7(9):e45071.  https://doi.org/10.1371/journal.pone.0045071 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Winegardner AK, Beisner E, Legendre P, Gregory-Eaves I (2015) Are the landscape-level drivers of water column and surface sediment diatoms different? Freshw Biol 60(2):267–281.  https://doi.org/10.1111/fwb.12478 CrossRefGoogle Scholar
  75. Wojciechowski J, Heino J, Bini LM, Padial AA (2017) Temporal variation in phytoplankton beta diversity patterns and metacommunity structures across subtropical reservoirs. Freshw Biol 62(4):751–766.  https://doi.org/10.1111/fwb.12899 CrossRefGoogle Scholar
  76. Zorzal-Almeida S, Bini LM, Bicudo DB (2017) Beta diversity of diatoms is driven by environmental heterogeneity, spatial extent and productivity. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3117-3 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gisele C. Marquardt
    • 1
  • André Andrian Padial
    • 2
  • Carlos E. de M. Bicudo
    • 1
  1. 1.Ecology DepartmentInstituto de BotânicaSão PauloBrazil
  2. 2.Laboratório de Análise e Síntese em Biodiversidade, Programa de Pós-graduação em Ecologia e Conservação, Departamento de Botânica, Setor de Ciências Biológicas, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations