Aquatic Sciences

, Volume 79, Issue 4, pp 783–801 | Cite as

Functional ecology of fish: current approaches and future challenges

  • Sébastien Villéger
  • Sébastien Brosse
  • Maud Mouchet
  • David Mouillot
  • Michael J. Vanni


Fish communities face increasing anthropogenic pressures in freshwater and marine ecosystems that modify their biodiversity and threaten the services they supply to human populations. To address these issues, studies have been increasingly focusing on functions of fish that are linked to their main ecological roles in aquatic ecosystems. Fish are indeed known to control other organisms through predation, mediate nutrient fluxes, and can act as ecosystem engineers. Here for each of the key functions played by fish, we present the functional traits that have already been used to assess them. We include traits measurable from observations on living individuals, morphological features measured on preserved organisms or traits categorized using information from the literature, and we discuss their respective advantages and limitations. We then list future research directions to foster a more complete functional approach for fish ecology that needs to incorporate functional traits describing, food provisioning and cultural services while accounting more frequently for intraspecific variability. Finally, we highlight ecological and evolutionary questions that could be addressed using meta-analyses of large trait databases, and how a trait-based framework could provide valuable insights on the mechanistic links between global changes, functional diversity of fish assemblages, and ecosystem services.


Ocean River Biodiversity Functional trait Global change Ecosystem services Fish 



During manuscript preparation, S. Villéger was supported by a grant from the CNRS (BIOHEFFECT RENUPEC). M.J. Vanni was supported by NSF grant DEB-0918993 (an OPUS award). S. Brosse is a member of the lab EDB, part of the “Laboratoires d’Excellence (LABEX)” entitled TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-25). We thank Dr Mark Kennard and two anonymous reviewers for their constructive comments on an earlier version of this manuscript.

Supplementary material

27_2017_546_MOESM1_ESM.doc (372 kb)
Supplementary material 1 (DOC 372 KB)


  1. Akin S, Winemiller KO (2008) Body size and trophic position in a temperate estuarine food web. Acta Oecol 33:144–153CrossRefGoogle Scholar
  2. Albouy C, Guilhaumon F, Villéger S, Mouchet M, Mercier L, Culioli J, Tomasini J, Le Loc’h F, Mouillot D (2011) Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Mar Ecol Prog Ser 436:17–28CrossRefGoogle Scholar
  3. Allgeier JE, Layman CA, Mumby PJ, Rosemond AD (2014) Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob Change Biol 20:2459–2472CrossRefGoogle Scholar
  4. Allgeier JE, Layman CA, Mumby PJ, Rosemond AD (2015a) Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol Monogr 85:117–132CrossRefGoogle Scholar
  5. Allgeier JE, Wenger SJ, Schindler DE, Rosemond AD, Layman CA (2015b) Metabolic theory and biodiversity, but not stoichiometry, predict nutrient cycling in a diverse food web. Proc Natl Acad Sci USA 112:E2640–E2647PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balon EK (1975) Reproductive guilds of fishes: a proposal and definition. J Fish Res Board Can 32:821–864CrossRefGoogle Scholar
  7. Barnett A, Bellwood DR, Hoey AS (2006) Trophic ecomorphology of cardinalfish. Mar Ecol Prog Ser 322:249–257CrossRefGoogle Scholar
  8. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285CrossRefGoogle Scholar
  9. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833PubMedCrossRefGoogle Scholar
  10. Bellwood DR, Hughes TP, Hoey AS (2006a) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439PubMedCrossRefGoogle Scholar
  11. Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2006b) Functional versatility supports coral reef biodiversity. Proc R Soc B Biol Sci 273:101–107CrossRefGoogle Scholar
  12. Bellwood DR, Hoey AS, Hughes TP (2012) Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc R Soc B Biol Sci 279:1621–1629CrossRefGoogle Scholar
  13. Bellwood DR, Goatley CHR, Brandl SJ, Bellwood O (2014) Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc R Soc B Biol Sci 281:20133046CrossRefGoogle Scholar
  14. Blake RW (2004) Fish functional design and swimming performance. J Fish Biol 65:1193–1222CrossRefGoogle Scholar
  15. Blanchet S, Grenouillet G, Beauchard O, Tedesco PA, Leprieur F, Dürr HH, Busson F, Oberdorff T, Brosse S (2010) Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule. Ecol Lett 13:421–431PubMedCrossRefGoogle Scholar
  16. Blanck A, Tedesco PA, Lamouroux N (2007) Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshw Biol 52:843–859CrossRefGoogle Scholar
  17. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28PubMedCrossRefGoogle Scholar
  18. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boulêtreau S, Cucherousset J, Villéger S, Masson R, Santoul F (2011) Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot. PLoS ONE 6:e25732PubMedPubMedCentralCrossRefGoogle Scholar
  20. Braig EC, Johnson DL (2003) Impact of black bullhead (Ameiurus melas) on turbidity in a diked wetland. Hydrobiologia 490:11–21CrossRefGoogle Scholar
  21. Brandl SJ, Bellwood DR (2013) Morphology, sociality, and ecology: can morphology predict pairing behavior in coral reef fishes? Coral Reefs 32:835–846CrossRefGoogle Scholar
  22. Brandl SJ, Bellwood DR (2014a) Individual-based analyses reveal limited functional overlap in a coral reef fish community. J Anim Ecol 88:661–670CrossRefGoogle Scholar
  23. Brandl SJ, Bellwood DR (2014b) Pair-formation in coral reef fishes: an ecological perspective. Oceanogr Mar Biol Annu Rev 52:1–80Google Scholar
  24. Brandl SJ, Hoey AS, Bellwood DR (2014) Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs. Coral Reefs 33:421–430CrossRefGoogle Scholar
  25. Bridge TCL, Luiz OJ, Coleman RR, Kane CN, Kosaki RK (2016) Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc R Soc B Biol Sci 283:20152332CrossRefGoogle Scholar
  26. Brind’Amour A, Boisclair D, Dray S, Legendre P (2011) Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecol Appl 21:363–377PubMedCrossRefGoogle Scholar
  27. Buisson L, Grenouillet G, Villéger S et al. (2013) Toward a loss of functional diversity in stream fish assemblages under climate change. Glob Change Biol 19:387–400CrossRefGoogle Scholar
  28. Burkepile DE, Allgeier JE, Shantz AA, Pritchard CE, Lemoine NP, Bhatti LH, Layman CA (2013) Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci Rep 3:1493PubMedCrossRefGoogle Scholar
  29. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  30. Camp AL, Roberts TJ, Brainerd EL (2015) Swimming muscles power suction feeding in largemouth bass. Proc Natl Acad Sci USA 112:8690–8695PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carroll AM, Wainwright PC, Huskey SH, Collar DC, Turingan RG (2004) Morphology predicts suction feeding performance in Centrarchid fishes. J Exp Biol 207:3873–3881PubMedCrossRefGoogle Scholar
  32. Clavero M, García-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecol Appl 16:2313–2324PubMedCrossRefGoogle Scholar
  33. Claverie T, Wainwright PC (2014) A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. Plos One 9:e112732PubMedPubMedCentralCrossRefGoogle Scholar
  34. Clements KD, German DP, Piché J et al (2017) Integrating ecological roles and trophic resources on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc. doi: 10.1111/bij.12914 Google Scholar
  35. Cleveland A, Montgomery W (2003) Gut characteristics and assimilation efficiencies in two species of herbivorous damselfishes (Pomacentridae: Stegastes dorsopunicans and S. planifrons). Mar Biol 142:35–44CrossRefGoogle Scholar
  36. Collar DC, Wainwright PC (2006) Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evol Int J Org Evol 60:2575–2584CrossRefGoogle Scholar
  37. Collar DC, Wainwright PC, Alfaro ME (2008) Integrated diversification of locomotion and feeding in labrid fishes. Biol Lett 4:84–86PubMedCrossRefGoogle Scholar
  38. Cooke SJ, Cowx IG (2004) The role of recreational fishing in global fish crises. Bioscience 54:857–859CrossRefGoogle Scholar
  39. Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  40. Cowan Z-L, Dworjanyn SA, Caballes CF, Pratchett MS (2016) Predation on crown-of-thorns starfish larvae by damselfishes. Coral Reefs 35:1253–1262CrossRefGoogle Scholar
  41. Cowey CB, Cho CY (1993) Nutritional requirements of fish. Proc Nutr Soc 52:417–426PubMedCrossRefGoogle Scholar
  42. D’Agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR, Cinner JE, Cowman PF, Kronen M, Pinca S, Vigliola L (2014) Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr Biol 24:555–560PubMedCrossRefGoogle Scholar
  43. Dejen E, Vijverberg J, de Graaf M, Sibbing FA (2006) Predicting and testing resource partitioning in a tropical fish assemblage of zooplanktivorous “barbs”: an ecomorphological approach. J Fish Biol 69:1356–1378CrossRefGoogle Scholar
  44. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  45. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dumay O, Tari PS, Tomasini JA, Mouillot D (2004) Functional groups of lagoon fish species in Languedoc Roussillon, southern France. J Fish Biol 64:970–983CrossRefGoogle Scholar
  47. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  48. FAO (2010) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  49. Flecker AS, Taylor BW (2004) Tropical fishes as biological bulldozers: density effects on resource heterogeneity and species diversity. Ecology 85:2267–2278CrossRefGoogle Scholar
  50. Fletcher T, Altringham J, Peakall J, Wignall P, Dorrell R (2014) Hydrodynamics of fossil fishes. Proc R Soc B Biol Sci 281:20140703CrossRefGoogle Scholar
  51. Ford JR, Swearer SE (2013) Shoaling behaviour enhances risk of predation from multiple predator guilds in a marine fish. Oecologia 172:387–397PubMedCrossRefGoogle Scholar
  52. Fox RJ, Bellwood DR (2008a) Direct versus indirect methods of quantifying herbivore grazing impact on a coral reef. Mar Biol 154:325–334CrossRefGoogle Scholar
  53. Fox RJ, Bellwood DR (2008b) Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27:605–615CrossRefGoogle Scholar
  54. Franco A, Elliott M, Franzoi P, Torricelli P (2008) Life strategies of fishes in European estuaries: the functional guild approach. Mar Ecol Prog Ser 354:219–228CrossRefGoogle Scholar
  55. Franssen NR, Harris J, Clark SR, Schaefer JF, Stewart LK (2013) Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration. Proc R Soc B Biol Sci 280:20122715CrossRefGoogle Scholar
  56. Friedman ST, Price SA, Hoey AS, Wainwright PC (2016) Ecomorphological convergence in planktivorous surgeonfishes. J Evol Biol 29:965–978PubMedCrossRefGoogle Scholar
  57. Froese R, Pauly D (2017) FishBase. Accessed 20 Jan 2017
  58. Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson JH, Xenopoulos MA, Yoshida T (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779PubMedCrossRefGoogle Scholar
  59. Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26:217–228CrossRefGoogle Scholar
  60. Fulton CJ, Bellwood DR, Wainwright PC (2001) The relationship between swimming ability and habitat use in wrasses (Labridae). Mar Biol 139:25–33CrossRefGoogle Scholar
  61. Gatz AJ (1979) Ecological morphology of freshwater stream fishes. Tulane Stud Zool Bot 21:91–124Google Scholar
  62. Graham NAJ, Chabanet P, Evans RD, Jennings S, Letourneur Y, Macneil MA, McClanahan TR, Ohman MC, Polunin NVC, Wilson SK (2011) Extinction vulnerability of coral reef fishes. Ecol Lett 14:341–348PubMedPubMedCentralCrossRefGoogle Scholar
  63. Grubich J (2003) Morphological convergence of pharyngeal jaw structure in durophagous perciform fish. Biol J Linn Soc 80:147–165CrossRefGoogle Scholar
  64. Hall RO Jr, Koch BJ, Marshall MC (2007) How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In: Hildrew AG, Raffaelli DG, Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge, pp 286–305CrossRefGoogle Scholar
  65. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952PubMedCrossRefGoogle Scholar
  66. Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharska M, Bucur M, Dunford R, Egoh B, Garcia-Llorente M, Geamănă N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Ser 9:191–203CrossRefGoogle Scholar
  67. Higham TE (2007a) Feeding, fins and braking maneuvers: locomotion during prey capture in centrarchid fishes. J Exp Biol 210:107–117PubMedCrossRefGoogle Scholar
  68. Higham TE (2007b) The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr Comp Biol 47:82–95PubMedCrossRefGoogle Scholar
  69. Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29:253–268CrossRefGoogle Scholar
  70. Hood JM, Vanni MJ, Flecker AS (2005) Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146:247–257PubMedCrossRefGoogle Scholar
  71. Ibañez, C, Tedesco P, Bigorne R, Hugueny B, Pouilly M, Zepita C, Zubieta J, Oberdorff T (2007) Dietary-morphological relationships in fish assemblages of small forested streams in the Bolivian Amazon. Aquat Living Resour 20:131–142CrossRefGoogle Scholar
  72. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637PubMedCrossRefGoogle Scholar
  73. Janetski DJ, Chaloner DT, Tiegs SD, Lamberti GA (2009) Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159:583–595PubMedCrossRefGoogle Scholar
  74. Januchowski-Hartley FA, Graham NAJ, Cinner JE, Russ GR, De Leo G (2013) Spillover of fish naïveté from marine reserves. Ecol Lett 16:191–197PubMedCrossRefGoogle Scholar
  75. Karpouzi VS, Stergiou KI (2003) The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J Fish Biol 62:1353–1365CrossRefGoogle Scholar
  76. Kattge J, Díaz S, Lavorel S, et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935CrossRefGoogle Scholar
  77. Keddy PA (1992) A pragmatic approach to functional ecology. Funct Ecol 6:621–626CrossRefGoogle Scholar
  78. Kobler A, Klefoth T, Mehner T, Arlinghaus R (2009) Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161:837–847PubMedCrossRefGoogle Scholar
  79. Konow N, Bellwood DR (2011) Evolution of high trophic diversity based on limited functional disparity in the feeding apparatus of marine angelfishes (f Pomacanthidae). Plos One 6:e24113PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kramer DL, Bryant J (1995) Intestine length in the fishes of a tropical stream: two relationships to diet the long and short of a convoluted issue. Environ Biol Fishes 42:129–141CrossRefGoogle Scholar
  81. Krone R, Bshary R, Paster M, Eisinger M, Treeck P, Schuhmacher H (2008) Defecation behaviour of the lined bristletooth surgeonfish Ctenochaetus striatus (Acanthuridae). Coral Reefs 27:619–622CrossRefGoogle Scholar
  82. Lauder GV (2015) Fish locomotion: recent advances and new directions. Annu Rev Mar Sci 7:521–545CrossRefGoogle Scholar
  83. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  84. Layman CA, Allgeier JE, Rosemond AD, Dahlgren CP, Yeager LA (2011) Marine fisheries declines viewed upside down: human impacts on consumer-driven nutrient recycling. Ecol Appl 21:343–349PubMedCrossRefGoogle Scholar
  85. Leal MC, Vaz MCM, Puga J, Rocha RJM, Brown C, Rosa R, Calado R (2015) Marine ornamental fish imports in the European Union: an economic perspective. Fish Fish 17:459–468CrossRefGoogle Scholar
  86. Leitão RP, Zuanon J, Mouillot D et al (2017) Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 125:336–342Google Scholar
  87. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. Plos Biol 6:e28PubMedPubMedCentralCrossRefGoogle Scholar
  88. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34PubMedPubMedCentralCrossRefGoogle Scholar
  89. Luck GW, Lavorel S, Mcintyre S, Lumb K (2012) Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J Anim Ecol 81:1065–1076PubMedCrossRefGoogle Scholar
  90. Luiz OJ, Allen AP, Robertson DR et al (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci 110:16498–16502PubMedPubMedCentralCrossRefGoogle Scholar
  91. Madin JS, Anderson KD, Andreasen MH, et al. (2016) The Coral trait database, a curated database of trait information for coral species from the global oceans. Sci Data 3:160017PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mason NWH, Lanoiselée C, Mouillot D, Irz P, Argillier C (2007) Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153:441–452PubMedCrossRefGoogle Scholar
  93. Mason NWH, Irz P, Lanoiselée C, Mouillot D, Argillier C (2008a) Evidence that niche specialization explains species–energy relationships in lake fish communities. J Anim Ecol 77:285–296PubMedCrossRefGoogle Scholar
  94. Mason NWH, Lanoiselée C, Mouillot D, Wilson JB, Argillier C (2008b) Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. J Anim Ecol 77:661–669PubMedCrossRefGoogle Scholar
  95. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  96. McIntyre PB, Jones LE, Flecker AS, Vanni MJ (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466PubMedPubMedCentralCrossRefGoogle Scholar
  97. McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89:2335–2346PubMedCrossRefGoogle Scholar
  98. Meyer JL, Schultz ET (1985) Migrating Haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30:146–156CrossRefGoogle Scholar
  99. Mims MC, Olden JD, Shattuck ZR, Poff NL (2010) Life history trait diversity of native freshwater fishes in North America. Ecol Freshw Fish 19:390–400CrossRefGoogle Scholar
  100. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  101. Montana CO, Winemiller KO, Sutton A (2014) Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecol Monogr 84:91–107CrossRefGoogle Scholar
  102. Moretti M, Dias ATC, de Bello F et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567CrossRefGoogle Scholar
  103. Mouchet MA, Burns MDM, Garcia AM, Vieira JP, Mouillot D (2013) Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122:247–257CrossRefGoogle Scholar
  104. Mouillot D, Albouy C, Guilhaumon F, Ben Rais Lasram F, Coll M, Devictor V, Meynard CN, Pauly D, Tomasini JA, Troussellier M, Velez L, Watson R, Douzery EJP, Mouquet N (2011a) Protected and threatened components of fish biodiversity in the Mediterranean sea. Curr Biol 21:1044–1050PubMedCrossRefGoogle Scholar
  105. Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011b) Functional structure of biological communities predicts ecosystem multifunctionality. Plos One 6:e17476PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177PubMedCrossRefGoogle Scholar
  107. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-Gonzalez JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci 111:13757–13762PubMedPubMedCentralCrossRefGoogle Scholar
  108. Münkemüller T, Lavergne S, Bzeznik B et al (2012) How to measure and test phylogenetic signal. Method Ecol. Evol Int J org Evol 3:743–756CrossRefGoogle Scholar
  109. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283PubMedCrossRefGoogle Scholar
  110. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406PubMedCrossRefGoogle Scholar
  111. Nelson JS (2006) Fishes of the world. Wiley, HobokenGoogle Scholar
  112. Olden JD, Poff NL, Bestgen KR (2006) Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol Monogr 76:25–40CrossRefGoogle Scholar
  113. Olden JD, Poff NL, Bestgen KR (2008) Trait synergisms and the rarity, extirpation, and extinction risk of desert fishes. Ecology 89:847–856PubMedCrossRefGoogle Scholar
  114. Parravicini V, Villéger S, McClanahan TR, Arias-González JE, Bellwood DR, Belmaker J, Chabanet P, Floeter SR, Friedlander AM, Guilhaumon F, Vigliola L, Kulbicki M, Mouillot D (2014) Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol Lett 17:1101–1110PubMedCrossRefGoogle Scholar
  115. Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO (2012) Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshw Biol 57:1060–1075CrossRefGoogle Scholar
  116. Peres-Neto PR (2004) Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140:352–360PubMedCrossRefGoogle Scholar
  117. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758PubMedCrossRefGoogle Scholar
  118. Pilati A, Vanni MJ (2007) Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116:1663–1674CrossRefGoogle Scholar
  119. Pinsky ML, Jensen OP, Ricard D, Palumbi SR (2011) Unexpected patterns of fisheries collapse in the world’s oceans. Proc Natl Acad Sci USA 108:8317–8322PubMedPubMedCentralCrossRefGoogle Scholar
  120. Porter MM, Adriaens D, Hatton RL, Meyers MA, McKittrick J (2015) Why the seahorse tail is square. Science 349:6683CrossRefGoogle Scholar
  121. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97PubMedCrossRefGoogle Scholar
  122. Pouilly M, Lino F, Bretenoux J-G, Rosales C (2003) Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. J Fish Biol 62:1137–1158CrossRefGoogle Scholar
  123. Price SA, Holzman R, Near TJ, Wainwright PC (2011) Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol Lett 14:462–469PubMedCrossRefGoogle Scholar
  124. Price SA, Friedman ST, Wainwright PC (2015) How predation shaped fish: the impact of fin spines on body form evolution across teleosts. Proc R Soc B Biol Sci 282:20151428CrossRefGoogle Scholar
  125. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun 4:1958PubMedCrossRefGoogle Scholar
  126. Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc Lond Ser B Biol sci 366:2536–2544CrossRefGoogle Scholar
  127. Schaus MH, Vanni MJ (2000) Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81:1701–1719CrossRefGoogle Scholar
  128. Scheffer M, Portielje R, Zambrano L (2003) Fish facilitate wave resuspension of sediment. Limnol Oceanogr 48:1920–1926CrossRefGoogle Scholar
  129. Schindler DE, Eby LA (1997) Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78:1816–1831CrossRefGoogle Scholar
  130. Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–251CrossRefGoogle Scholar
  131. Schleuter D, Daufresne M, Veslot J, Mason NWH, Lanoiselée C, Brosse S, Beauchard O, Argillier C (2012) Geographic isolation and climate govern the functional diversity of native fish communities in European drainage basins. Glob Ecol Biogeogr 21:1083–1095CrossRefGoogle Scholar
  132. Schmitz L, Wainwright PC (2011) Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol Biol 11:338PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sereda JM, Hudson JJ (2011) Empirical models for predicting the excretion of nutrients (N and P) by aquatic metazoans: taxonomic differences in rates and element ratios. Freshw Biol 56:250–263CrossRefGoogle Scholar
  134. Sibbing F, Nagelkerke I (2001) Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev Fish Biol Fish 10:393–437CrossRefGoogle Scholar
  135. Stallings CD (2010) Experimental test of preference by a predatory fish for prey at different densities. J Exp Mar Biol Ecol 389:1–5CrossRefGoogle Scholar
  136. Sternberg D, Kennard MJ (2014) Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish. Ecography 37:54–64CrossRefGoogle Scholar
  137. Suding KN, Lavorel S, Chapin FS et al. (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140CrossRefGoogle Scholar
  138. Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, Elser JJ, Fagan WF, Forero-Montaña J, Fyllas N, Kraft NJB, Lake JK, Moles AT, Patiño S, Phillips OL, Price CA, Reich PB, Quesada CA, Stegen JC, Valencia R, Wright IJ, Wright SJ, Andelman S, Jørgensen PM, Lacher TE Jr, Monteagudo A, Núñez-Vargas MP, Vasquez-Martínez R, Nolting KM (2012) The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21:798–808CrossRefGoogle Scholar
  139. Takahashi R, Moriwaki T, Hori M (2007) Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J Fish Biol 70:1458–1469CrossRefGoogle Scholar
  140. Tanaka H, Aoki I, Ohshimo S (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J Fish Biol 68:1041–1061CrossRefGoogle Scholar
  141. Tarvainen M, Anttalainen A, Helminen H, Keskinen T, Sarvala J, Vaahto I, Karjalainen J (2008) A validated bioenergetics model for ruffe Gymnocephalus cernuus and its application to a northern lake. J Fish Biol 73:536–556CrossRefGoogle Scholar
  142. Taylor BW, Flecker AS, Hall RO (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313:833–836PubMedCrossRefGoogle Scholar
  143. Tebbett SB, Goatley CHR, Bellwood DR (2017) Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs. doi: 10.1007/s00338-017-1571-z Google Scholar
  144. Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15:181–195CrossRefGoogle Scholar
  145. Tomas F, Turon X, Romero J (2005) Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Mar Ecol Prog Ser 301:95–107CrossRefGoogle Scholar
  146. Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270CrossRefGoogle Scholar
  147. Toussaint A, Charpin N, Brosse S, Villéger S (2016) Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci Rep 6:22125PubMedPubMedCentralCrossRefGoogle Scholar
  148. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370CrossRefGoogle Scholar
  149. Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol Lett 5:285–293CrossRefGoogle Scholar
  150. Vanni MJ, Bowling AM, Dickman EM, Hale RS, Higgins KA, Horgan MJ, Knoll LB, Renwick WH, Stein RA (2006) Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87:1696–1709PubMedCrossRefGoogle Scholar
  151. Vanni MJ, Boros G, McIntyre PB (2013) When are fish sources vs. sinks of nutrients in lake ecosystems? Ecology 94:2195–2206PubMedCrossRefGoogle Scholar
  152. Villéger S, Ramos Miranda J, Flores Hernandez D, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522PubMedCrossRefGoogle Scholar
  153. Villéger S, Grenouillet G, Suc V, Brosse S (2012a) Intra- and interspecific differences in nutrient recycling by European freshwater fish. Freshw Biol 57:2330–2341CrossRefGoogle Scholar
  154. Villéger S, Ramos Miranda J, Flores Hernandez D, Mouillot D (2012b) Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. Plos One 7:e40679PubMedPubMedCentralCrossRefGoogle Scholar
  155. Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681CrossRefGoogle Scholar
  156. Villéger S, Grenouillet G, Brosse S (2014) Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Glob Ecol Biogeogr 23:1450–1460CrossRefGoogle Scholar
  157. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRefGoogle Scholar
  158. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252PubMedCrossRefGoogle Scholar
  159. Voesenek CJ, Pieters RPM, van Leeuwen JL (2016) Automated reconstruction of three-dimensional fish motion, forces, and torques. Plos One 11:e0146682PubMedPubMedCentralCrossRefGoogle Scholar
  160. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561PubMedCrossRefGoogle Scholar
  161. Vrede T, Drakare S, Eklöv P, Hein A, Liess A, Olsson J, Persson J, Quevedo M, Stabo HR, Svanbäck R (2011) Ecological stoichiometry of Eurasian perch—intraspecific variation due to size, habitat and diet. Oikos 120:886–896CrossRefGoogle Scholar
  162. Wagner HJ (2001) Sensory brain areas in mesopelagic fishes. Brain Behav Evol 57:117–133PubMedCrossRefGoogle Scholar
  163. Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E (2009) Diet predicts intestine length in Lake Tanganyika’s Cichlid fishes. Funct Ecol 23:1122–1131CrossRefGoogle Scholar
  164. Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–113CrossRefGoogle Scholar
  165. Wainwright PC, Bellwood DR, Westneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fish 65:47–62CrossRefGoogle Scholar
  166. Wainwright PC, Bellwood DR, Westneat MW, Grubich JR, Hoey AS (2004) A functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system. Biol J Linn Soc 82:1–25CrossRefGoogle Scholar
  167. Wainwright P, Carroll AM, Collar DC, Day SW, Higham TE, Holzman RA (2007) Suction feeding mechanics, performance, and diversity in fishes. Integr Comp Biol 47:96–106PubMedCrossRefGoogle Scholar
  168. Webb PW (1984) Form and function in fish swimming. Sci Am 251:72–82CrossRefGoogle Scholar
  169. Westneat MW, Alfaro ME, Wainwright PC et al. (2005) Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae. Proc R Soc B Biol Sci 272:993–1000CrossRefGoogle Scholar
  170. Whiles MR, Huryn AD, Taylor BW, Reeve JD (2009) Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnol Oceanogr Method 7:1–7CrossRefGoogle Scholar
  171. White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2:125–127PubMedCrossRefGoogle Scholar
  172. Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish—why and how? Biochim Biophys Acta 1566:182–193PubMedCrossRefGoogle Scholar
  173. Wilson RW, Millero FJ, Taylor JR (2009) Contribution of fish to marine inorganic carbon cycle. Science 323:359–362PubMedCrossRefGoogle Scholar
  174. Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365CrossRefGoogle Scholar
  175. Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci 885:872–885CrossRefGoogle Scholar
  176. Winemiller KO, Rose KA (1992) Patterns of life-history in North American: implications for population regulation. Can J Fish Aquat Sci 49:2196–2218CrossRefGoogle Scholar
  177. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yahel G, Yahel R, Katz T, Lazar B (2008) Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar Ecol Prog Ser 372:195–209CrossRefGoogle Scholar
  179. Yeager LA, Layman CA, Allgeier JE (2011) Effects of habitat heterogeneity at multiple spatial scales on fish community assembly. Oecologia 167:157–168PubMedCrossRefGoogle Scholar
  180. Zhao T, Villéger S, Lek S, Cucherousset J (2014) High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecol Evol 4:4649–4657PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Biodiversité Marine et ses usages (UMR 9190 MARBEC) CNRS-UM-IFREMER-IRD, Université de MontpellierMontpellier Cedex 5France
  2. 2.Laboratoire Évolution et Diversité Biologique UMR 5174 UPS-CNRS-ENFA, Université Paul SabatierToulouseFrance
  3. 3.Centre d’Ecologie et de Sciences de la Conservation UMR 7204 CNRS-MNHN-UPMCParisFrance
  4. 4.Department of BiologyMiami UniversityOxfordUSA

Personalised recommendations