Aquatic Sciences

, Volume 79, Issue 3, pp 487–505 | Cite as

Nitrogen uptake and coupled nitrification–denitrification in riverine sediments with benthic microalgae and rooted macrophytes

  • Erica RacchettiEmail author
  • Daniele Longhi
  • Cristina Ribaudo
  • Elisa Soana
  • Marco Bartoli
Research Article


Riverine ecosystems receive nitrogen loads from point and diffuse sources that are transferred downstream. Such loads may undergo poorly explored retention and dissipation processes, varying along gradients of nitrogen availability due to different interactions among primary producers and microbial communities. We measured carbon uptake and nitrogen fluxes in microcosms containing riverine sediments with benthic algae and submerged macrophytes (Vallisneria spiralis L.). Coupled nitrification–denitrification rates were determined via 15N–NH4 + injection in the pore water and quantification of the produced 29N2 and 30N2. Two sites with different N–NO3 concentration and sediment organic content were investigated. We hypothesized that: (1) N–NO3 availability promotes water column N uptake and attenuates primary producers-bacteria competition; (2) coupled nitrification–denitrification is stimulated by radial oxygen loss from roots; (3) macrophyte meadows favour both temporary nitrogen retention and permanent removal. Sediments with V. spiralis were mostly inorganic C and N sinks and always displayed higher coupled nitrification–denitrification rates compared to sediments with microphytobenthos. Highest rates, up to 100 µmol N m−2 h−1, were measured at the more eutrophic site and in the light. This is likely due to a shift from root to leaf uptake at the N–NO3 rich site, attenuating plant-bacteria competition, and to increased radial oxygen loss in organic-rich sediments, stimulating nitrification. High rates of N uptake and loss in lotic sediments represent natural buffers preventing N transport downstream and stress the need to preserve aquatic vegetation and its ecosystem services.


Sediment Vallisneria spiralis L. Rhizosphere Microphytobenthos Coupled nitrification–denitrification N-uptake 



E. Racchetti was supported by FLA (Fondazione Lombardia per l’Ambiente, Lombardy Foundation for the Environment).


  1. Agami M, Waisel Y (1986) The ecophysiology of roots of submerged vascular plants. Physiol Veg 24:607–624Google Scholar
  2. Anderson LG, Hall POJ, Iverfeldt A, Van der Loe MMR, Sundby B, Westerlund SFG (1986) Benthic respiration measured by total carbonate production. Limnol Oceanogr 31:319–329CrossRefGoogle Scholar
  3. Arth I, Frenzel P, Conrad R (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol Biochem 30:509–515CrossRefGoogle Scholar
  4. Barko JW, Smart RM (1986) Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67:1328–1340CrossRefGoogle Scholar
  5. Barko JW, Gunnison G, Carpenter SR (1991) Sediment interactions with submerged macrophyte growth and community dynamics. Aquat Bot 41:41–65CrossRefGoogle Scholar
  6. Bartoli M, Nizzoli D, Viaroli P (2003) Microphytobenthos activity and fluxes at the sediment–water interface: interactions and spatial variability. Aquat Ecol 37(4):341–349CrossRefGoogle Scholar
  7. Bartoli M, Racchetti E, Delconte CA, Sacchi E, Soana E, Laini A, Longhi D, Viaroli P (2012) Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 9(1):361–373CrossRefGoogle Scholar
  8. Bedford BL, Bouldin DR, Beliveau BD (1991) Net oxygen and carbon-dioxide balances in solutions bathing roots of wetland plants. J Ecol 79:943–959CrossRefGoogle Scholar
  9. Bower CE, Holm-Hansen T (1980) A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37:794–798CrossRefGoogle Scholar
  10. Caffrey JM, Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66:147–160CrossRefGoogle Scholar
  11. Caffrey JM, Kemp WM (1991) Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat Bot 40(2):109–128CrossRefGoogle Scholar
  12. Caffrey JM, Kemp WM (1992) Influence of the submerged plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol Oceanogr 37:1483–1495CrossRefGoogle Scholar
  13. Caraco NF, Cole JJ (2002) Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecol Appl 12(5):1496–1509CrossRefGoogle Scholar
  14. Caraco N, Cole J, Findlay S, Wigand C (2006) Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56(3):219–225CrossRefGoogle Scholar
  15. Carpenter SR (1983) Submersed macrophyte community structure and internal loading: relationship to lake ecosystem productivity and succession. Lake Reserv Manag 2:105–111Google Scholar
  16. Carpenter SR, Elser JJ, Olson KM (1983) Effects of roots of Myriophyllum verticilatum L. on sediment redox conditions. Aquat Bot 17:243–249CrossRefGoogle Scholar
  17. Carr GM, Chambers PA (1998) Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biol 39:525–536CrossRefGoogle Scholar
  18. Castaldelli G, Soana E, Racchetti E, Vincenzi F, Fano EA, Bartoli M (2015) Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agric Ecosyst Environ 212:253–262CrossRefGoogle Scholar
  19. Cedergreen N, Madsen TV (2003) Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquat Bot 76:203–212CrossRefGoogle Scholar
  20. Dalsgaard T, Nielsen LP, Brotas V, Viaroli P, Underwood GJC, Nedwell DB, Sundbäck K, Rysgaard S, Miles A, Bartoli M, Dong L, Thornton DCO, Ottosen LDM, Castaldelli G, Risgaard-Petersen N (2000) Protocol handbook for NICE-nitrogen cycling in estuaries: a project under the EU research programme. Marine Science and Technology (MAST III), National Environmental Research Institute, SilkeborgGoogle Scholar
  21. Decleyre H, Heylen K, Sabbe K, Tytgat B, Deforce D, Van Nieuwerburgh F, Van Colen C, Willems A (2015) A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary. PLoS One 10(5):e0126583CrossRefPubMedPubMedCentralGoogle Scholar
  22. Denny P (1972) Sites of nutrient absorption in aquatic macrophytes. J Ecol 60:819–829CrossRefGoogle Scholar
  23. Desmet NJS, Van Belleghem S, Seuntjens P, Bouma TJ, Buis K, Meire P (2011) Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys Chem Earth Parts A/B/C 36(12):479–489CrossRefGoogle Scholar
  24. Flindt MR (1994) Measurements of nutrient fluxes and mass balances by on-line in situ dialysis in a Zostera marina bed culture. Verh Int Verein Theor Angew Limnol 25:2259–2264Google Scholar
  25. Forshay KJ, Dodson SI (2011) Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream. Hydrobiologia 668:21–34CrossRefGoogle Scholar
  26. Golterman HL, Clymo RS, Ohnstand MAM (1978) Methods for physical and chemical analysis of fresh waters. Blackwell, Oxford (I.B.P. Handbook number 8) Google Scholar
  27. Hauxwell J, Frazer TK, Osenberg CW (2007) An annual cycle of biomass and productivity of Vallisneria americana in a subtropical spring-fed estuary. Aquat Bot 87:61–68CrossRefGoogle Scholar
  28. Hines ME (2006) Microbially mediated redox cycling at the oxic–anoxic boundary in sediments: comparison of animal and plants habitats. Water Air Soil Pollut 6:523–536CrossRefGoogle Scholar
  29. Konnerup D, Brix H (2010) Nitrogen nutrition of Canna indica: effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquat Bot 92:142–148CrossRefGoogle Scholar
  30. Laskov C, Horn O, Hupfer M (2006) Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquat Bot 84:333–340CrossRefGoogle Scholar
  31. Lassaletta L, García-Gómez H, Gimeno BS, Rovira JV (2009) Agriculture-induced increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Sci Total Environ 407:6034–6043CrossRefPubMedGoogle Scholar
  32. Lassaletta L, Romero E, Billen G, Garnier J, Garcıa-Gomez H, Rovira JV (2012) Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer. Biogeosciences 9:57–70CrossRefGoogle Scholar
  33. Lemoine DG, Mermillod-Blondin F, Barrat-Segretain M, Massé C, Malet E (2012) The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia. Aquat Ecol 46:191–200CrossRefGoogle Scholar
  34. Levi PS, Riis T, Baisner AJ, Peipoch M, Pedersen CB, Baattrup-Pedersen A (2015) Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18:914–931CrossRefGoogle Scholar
  35. Li ZQ, Kong LY, Yang LF, Zhang M, Cao T, Xu J, Wang ZX, Lei Y (2012) Effect of substrate grain size in the growth and morphology of the submersed macrophyte Vallisneria natans L. Limnologica 42:81–85CrossRefGoogle Scholar
  36. Lorenzen J, Larsen LH, Kjær T, Revsbech NP (1998) Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment. Appl Environ Microbiol 64:3264–3269PubMedPubMedCentralGoogle Scholar
  37. Madsen TV, Cedergreen N (2002) Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biol 47:283–291CrossRefGoogle Scholar
  38. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84CrossRefGoogle Scholar
  39. McGlathery KJ, Risgaard-Petersen N, Christensen PB (1998) Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar Ecol Prog Ser 168:245–258CrossRefGoogle Scholar
  40. McGlathery KJ, Sundbäck K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18CrossRefGoogle Scholar
  41. Møller CL, Sand-Jensen K (2011) High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment. New Phytol 190:320–331CrossRefPubMedGoogle Scholar
  42. Møller CL, Sand-Jensen K (2012) Rapid oxygen exchange across the leaves of Littorella uniflora provides tolerance to sediment anoxia. Freshwater Biol 57:1875–1883CrossRefGoogle Scholar
  43. Nicolaisen MH, Risgaard-Petersen N, Revsbech NP, Reichardt W, Ramsing NB (2004) Nitrification–denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field. FEMS Microbiol Ecol 49:359–369CrossRefPubMedGoogle Scholar
  44. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362CrossRefGoogle Scholar
  45. Nizzoli D, Welsh DT, Longhi D, Viaroli P (2014) Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism, nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape: N assimilation versus N removal. Hydrobiologia 737(1):183–200CrossRefGoogle Scholar
  46. Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91CrossRefGoogle Scholar
  47. Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312CrossRefGoogle Scholar
  48. Pierobon E, Castaldelli G, Matovani S, Vincenzi F, Fano EA (2013) Nitrogen removal in vegetated and unvegetated drainage ditches impacted by diffuse and point sources of pollution. Clean 41(1):24–31Google Scholar
  49. Pinardi M, Bartoli M, Longhi D, Marzocchi U, Laini A, Ribaudo C, Viaroli P (2009) Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediment. J Limnol 68:133–145CrossRefGoogle Scholar
  50. Pulido C, Lucassen ECHET, Pedersen O, Roelfos JGM (2011) Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorella uniflora and Echinodorus repens. Freshwater Biol 56:939–951CrossRefGoogle Scholar
  51. Racchetti E, Bartoli M, Ribaudo C, Longhi D, Brito LEQ, Naldi M, Iacumin P, Viaroli P (2010) Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia 652:127–137CrossRefGoogle Scholar
  52. Racchetti E, Bartoli M, Soana E, Longhi D, Christian RR, Pinardi M, Viaroli P (2011) Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 103:335–354CrossRefGoogle Scholar
  53. Raun AL, Borum J, Sand-Jensen K (2010) Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants. Freshwater Biol 55:891–1904CrossRefGoogle Scholar
  54. Reddy KR, Patrick WH Jr, Lindau CWH (1989) Nitrification–denitrification at the plant root–sediment interface in wetlands. Limnol Oceanogr 34:1004–1013CrossRefGoogle Scholar
  55. Ribaudo C, Bartoli M, Racchetti E, Longhi D, Viaroli P (2011) Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss. Aquat Bot 94:134–142CrossRefGoogle Scholar
  56. Risgaard-Petersen N (2003) Coupled nitrification–denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol Oceanogr 48(1I):93–105Google Scholar
  57. Risgaard-Petersen N, Jensen K (1997) Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol Oceanogr 42:529–537CrossRefGoogle Scholar
  58. Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, Nielsen LP (1998) Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser 74:281–291CrossRefGoogle Scholar
  59. Sand-Jensen K, Prahl C, Stokholm H (1982) Oxygen release from roots of submerged aquatic macrophytes. Oikos 38(3):349–354CrossRefGoogle Scholar
  60. Sand-Jensen K, Borum J, Binzer T (2005) Oxygen stress and reduced growth of Lobelia dortmanna in sandy lake sediments subject to organic enrichment. Freshwater Biol 50:1034–1048CrossRefGoogle Scholar
  61. Schutten J, Dainty J, Davy AJ (2005) Root anchorage and its significance for submerged plants in shallow lakes. J Ecol 93:556–571CrossRefGoogle Scholar
  62. Soana E, Bartoli M (2013) Seasonal variation of radial oxygen loss in Vallisneria spiralis L.: an adaptive response to sediment redox? Aquat Bot 104:228–232CrossRefGoogle Scholar
  63. Soana E, Bartoli M (2014) Seasonal regulation of nitrification in a rooted macrophyte (Vallisneria spiralis L.) meadow under eutrophic conditions. Aquat Ecol 48:11–21CrossRefGoogle Scholar
  64. Soana E, Naldi M, Bartoli M (2012) Effects of increasing organic matter loads on pore water features of vegetated (Vallisneria spiralis L.) and plant-free sediments. Ecol Eng 47:141–145CrossRefGoogle Scholar
  65. Soana E, Naldi M, Bonaglia S, Racchetti E, Castaldelli G, Brüchert V, Viaroli P, Bartoli M (2015) Benthic nitrogen metabolism in a macrophyte meadow (Vallisneria spiralis L.) under increasing sedimentary organic matter loads. Biogeochemistry 124(1–3):387–404CrossRefGoogle Scholar
  66. Sousa AI, Lillebø AI, Risgaard-Petersen N, Pardal MA, Caçador I (2012) Denitrification: an ecosystem service provided by salt marshes. Mar Ecol Prog Ser 448:79–92CrossRefGoogle Scholar
  67. Stevens CL, Hurd CL (1997) Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 346:119–128CrossRefGoogle Scholar
  68. Sundbäck K, Linares F, Larson F, Wulff A, Engelsen A (2004) Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: the role of denitrification and microphytobenthos. Limnol Oceanogr 49(4I):1095–1107CrossRefGoogle Scholar
  69. Takayanagi S, Takagi Y, Shimizu A, Hasegawa H (2012) The shoot is important for high-affinity nitrate uptake in Egeria densa, a submerged vascular plant. J Plant Res 125:669–678CrossRefPubMedGoogle Scholar
  70. Thursby GB, Harlin MM (1984) Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar Biol 83:61–67CrossRefGoogle Scholar
  71. Tyler AC, McGlathery KJ, Anderson IC (2003) Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limnol Oceanogr 48(6):2125–2137CrossRefGoogle Scholar
  72. Van TK, Wheeler GS, Center TD (1999) Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquat Bot 62:225–233CrossRefGoogle Scholar
  73. Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20CrossRefGoogle Scholar
  74. Vila-Costa M, Pulido C, Chappuis E, Calviño A, Casamayor EO, Gacia E (2016) Macrophyte landscape modulates lake ecosystem-level nitrogen losses through tightly coupled plant-microbe interactions. Limnol Oceanogr 61:78–88CrossRefGoogle Scholar
  75. Wang J, Yu D (2007) Influence of sediment fertility on morphological variability of Vallisneria spiralis L. Aquat Bot 87:127–133CrossRefGoogle Scholar
  76. Wang C, Yan X, Wang P, Chen C (2008) Interactive Influence of N and P on their uptake by four different hydrophyte. Afr J Biotechnol 7(19):3480–3486Google Scholar
  77. Xie Y, An S, Wu B (2005) Resource allocation in the submerged plant Vallisneria natans related to sediment type, rather than water-column nutrients. Freshwater Biol 50:391–402CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Erica Racchetti
    • 1
    Email author
  • Daniele Longhi
    • 1
  • Cristina Ribaudo
    • 1
    • 2
  • Elisa Soana
    • 1
    • 3
  • Marco Bartoli
    • 1
    • 4
  1. 1.Department of Life SciencesUniversity of ParmaParmaItaly
  2. 2.Irstea-EABXCestasFrance
  3. 3.Department of Life Science and BiotechnologyUniversity of FerraraFerraraItaly
  4. 4.Coastal Research and Planning InstituteMarine Science and Technology Center of Klaipeda UniversityKlaipedaLithuania

Personalised recommendations