Aquatic Sciences

, Volume 79, Issue 3, pp 459–471 | Cite as

Wood mitigates the effect of hydropeaking scour on periphyton biomass and nutritional quality in semi-natural flume simulations

  • Matthew J. Cashman
  • Gemma L. Harvey
  • Geraldene Wharton
  • Maria Cristina Bruno
Research Article

Abstract

The daily fluctuating discharge from hydroelectric power plants, known as hydropeaking, has been shown to cause catastrophic drift in aquatic insect communities and limit secondary production, but relatively little attention has been given to its effects on periphyton, an important food resource for consumers. We simulated daily 5-h hydropeaking events over the course of 5 days in spring and summer in an open air, experimental flume system fed by a pristine 2nd order stream in the Italian Alps. We hypothesized that hydropeaking would suppress periphyton biomass and especially nutritional quality (i.e., fatty acid content). Hydropeaking resulted in decreased periphyton Chl-a and AFDM on tiles, but there was no corresponding loss on wood. Hydropeaking did not alter periphyton elemental nutrient stoichiometry but led to a disproportionate loss of periphyton fatty acid content on both substrates. Ordination of overall fatty acid profiles indicated different periphyton fatty acid profiles by substrate and a shift from physiologically important highly-unsaturated fatty acids to non-essential saturated fatty acids after hydropeaking. These results suggest that hydropeaking may have the potential to depress primary biomass and nutritional quality in downstream ecosystems, and that availability of wood substrate may mitigate part, but not all, of this effect. Since food nutritional quality, especially fatty acid content, has been suggested to be a limiting resource on production in aquatic systems, this may generate an indirect and potentially overlooked limiting effect on aquatic consumers in hydropeaking-impacted alpine rivers.

Keywords

Fatty acids Hydropeaking Hydropower Wood Alpine stream Artificial flumes 

Notes

Acknowledgements

The authors wish to thank the Servizio Bacini Montani of the Autonomous Province of Trento for building and maintaining the flumes, Lorenzo Forti and Martino Salvaro (Department of Environmental, Civil and Mechanical Engineering of the University of Trento) for their help in setting up and conducting the experiments, and Bruno Maiolini (Fondazione E. Mach), Stefano Mauro, Lorenzo Colaianni, Andrea Bertoncin, Mauro Carolli, Sonia Endrizzi, and Sofia Biffi for help in the field. We would also like to thank Lorena Reiss (Fondazione E. Mach), Angela Krüger (IGB), and Katrin Premke (IGB) for assistance in the lab. This research was carried out within the Erasmus Mundus Doctorate Program SMART (http://www.riverscience.eu) funded by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission.

References

  1. Abbe TB, Brooks AP, Montgomery DR (2003) Wood in river rehabilitation and management. In: Gregory SV, Boyer KL, Gurnell AM (eds) The Ecology and Management of Wood in World Rivers. American Fishery Society Symposium 37, Bethesda, pp 367–389Google Scholar
  2. Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639. doi: 10.1139/f01-004 CrossRefGoogle Scholar
  3. Anselmetti FS, Bühler R, Finger D, Girardclos S, Lancini A, Rellstab C, Sturm M (2007) Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat Sci 69:179–198. doi: 10.1139/cjfas-58-3-626 CrossRefGoogle Scholar
  4. Biggs BJF (1996) Patterns in benthic algae of streams. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, pp 31–56CrossRefGoogle Scholar
  5. Biggs BJ, Close ME (1989) Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biol 22:209–231. doi: 10.1111/j.1365-2427.1989.tb01096.x CrossRefGoogle Scholar
  6. Biggs BJ, Thomsen HA (1995) Disturbance of stream periphyton by perturbations in shear stress: time to structural failure and differences in community resistance. J Phycol 31:233–241. doi: 10.1111/j.0022-3646.1995.00233.x CrossRefGoogle Scholar
  7. Biggs BJF, Nikora VI, Snelder TH (2005) Linking scales of flow variability to lotic ecosystem structure and function. River Res Appl 21:283–298. doi: 10.1002/rra.847 CrossRefGoogle Scholar
  8. Blaschke AP, Steiner KH, Schmalfuss R, Gutknecht D, Sengschmitt D (2003) Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int Rev Hydrobiol 88:397–413. doi: 10.1002/iroh.200390034 CrossRefGoogle Scholar
  9. Blinn W, Shannon JP, Stevens LE, Carder JP (1995) Consequences of fluctuating discharge for lotic communities. J N Am Benthol Soc 14:233–248. doi: 10.2307/1467776 CrossRefGoogle Scholar
  10. Blinn DW, Shannon JP, Benenati PL, Wilson KP (1998) Algal ecology in tailwater stream communities: the Colorado River below Glen Canyon Dam, Arizona. J Phycol 34:734–740. doi: 10.1046/j.1529-8817.1998.340734.x CrossRefGoogle Scholar
  11. Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499. doi: 10.1046/j.1365-2427.1997.00220.x CrossRefGoogle Scholar
  12. Bruno MC, Maiolini B, Carolli M, Silveri L (2009) Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Ann Limnol-Int J Lim 45:157–170. doi: 10.1051/limn/2009018 CrossRefGoogle Scholar
  13. Bruno MC, Siviglia A, Carolli M, Maiolini B (2013) Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrol 6:511–522. doi: 10.1002/eco.1275 CrossRefGoogle Scholar
  14. Bruno MC, Cashman MJ, Maiolini B, Biffi S, Zolezzi G (2015) Responses of benthic invertebrates to repeated hydropeaking in semi-natural flume simulations. Ecohydrol 9:68–82. doi: 10.1002/eco.1611 CrossRefGoogle Scholar
  15. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507. doi: 10.1007/s00267-002-2737-0 CrossRefPubMedGoogle Scholar
  16. Cashman MJ, Wehr JD, Truhn K (2013) Elevated light and nutrients alter the nutritional quality of stream periphyton. Freshw Biol 58:1447–1457. doi: 10.1111/fwb.12142 CrossRefGoogle Scholar
  17. Céréghino R, Lavandier P (1998) Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshw Biol 40:385–399. doi: 10.1046/j.1365-2427.1998.00353.x CrossRefGoogle Scholar
  18. Céréghino R, Cugny P, Lavandier P (2002) Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int Rev Hydrobiol 87:47–60. doi: 10.1002/1522-2632(200201)87:1<47:AID-IROH47>3.0.CO;2-9 CrossRefGoogle Scholar
  19. Céréghino R, Legalle M, Lavandier P (2004) Drift and benthic population structure of the mayfly Rhithrogena semicolorata (Heptageniidae) under natural and hydropeaking conditions. Hydrobiologia 519:127–133. doi: 10.1023/B:HYDR.0000026499.53979.69 CrossRefGoogle Scholar
  20. Cross WF et al (2013) Food-web dynamics in a large river discontinuum. Ecol Monogr 83:311–337. doi: 10.1890/12-1727.1 CrossRefGoogle Scholar
  21. Curran JH, Wohl EE (2003) Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology 51:141–157. doi: 10.1016/S0169-555X(02)00333-1 CrossRefGoogle Scholar
  22. Davie AW, Mitrovic SM, Lim R (2012) Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inland Waters 2:89–100. doi: 10.5268/IW-2.2.441 CrossRefGoogle Scholar
  23. Delgado M, De Jonge V, Peletier H (1991) Effect of sand movement on the growth of benthic diatoms. J Exp Mar Biol Ecol 145:221–231. doi: 10.1016/0022-0981(91)90177-X CrossRefGoogle Scholar
  24. Ellis LE, Jones NE (2013) Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environ Rev 21:136–148. doi: 10.1139/er-2012-0064 CrossRefGoogle Scholar
  25. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. Accessed 4 Mar 2016
  26. Francoeur SN, Biggs BJ (2006) Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Advances in algal biology: a commemoration of the work of Rex Lowe. Springer, Netherlands, pp 59–69CrossRefGoogle Scholar
  27. Füreder L, Schütz C, Wallinger M, Burger R (2001) Physico-chemistry and aquatic insects of a glacier-fed and a spring-fed alpine stream. Freshw Biol 46:1673–1690. doi: 10.1046/j.1365-2427.2001.00862.x CrossRefGoogle Scholar
  28. Gippel CJ (1995) Environmental hydraulics of large woody debris in streams and rivers. J Environ Eng-ASCE 121:388–395. doi: 10.1061/(ASCE)0733-9372(1995)121:5(388) CrossRefGoogle Scholar
  29. Gore JA, Nestler JM, Layzer J (1989) Instream flow predictions and management options for biota affected by peaking-power hydroelectric operations. Regul Rivers: Res Mgmt 3:35–48. doi: 10.1002/rrr.3450030106 CrossRefGoogle Scholar
  30. Gore JA, Niemela S, Resh VH, Statzner B (1994) Near-substrate hydraulic conditions under artificial floods from peaking hydropower operation: a preliminary analysis of disturbance intensity and duration. Regul Rivers: Res Mgmt 9:15–34. doi: 10.1002/rrr.3450090103 CrossRefGoogle Scholar
  31. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338. doi: 10.1093/biomet/53.3-4.325 CrossRefGoogle Scholar
  32. Gregory KJ, Gurnell AM, Hill CT (1985) The permanence of debris dams related to river channel processes. Hydrolog Sci J 30:371–381. doi: 10.1080/02626668509491000 CrossRefGoogle Scholar
  33. Grelsson G (1985) Vegetational changes on two eroding banks of a short-term regulated river reservoir in northern Sweden. Nord J Bot 5:581–614. doi: 10.1111/j.1756-1051.1985.tb01695.x CrossRefGoogle Scholar
  34. Guo F, Kainz MJ, Sheldon F, Bunn SE (2015) Spatial variation in periphyton fatty acid composition in subtropical streams. Freshw Biol 60:1411–1422. doi: 10.1111/fwb.12578 CrossRefGoogle Scholar
  35. Guo F, Kainz MJ, Shaldon F, Bunn SE (2016a) The importance of high-quality algal food sources in stream food webs—current status and future perspectives. Freshw Biol. doi: 10.1111/fwb.12755 Google Scholar
  36. Guo F, Kainz MJ, Sheldon F, Bunn SE (2016b) Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia. doi: 10.1007/s00442-016-3573-x Google Scholar
  37. Gurnell AM, Piégay H, Swanson FJ, Gregory SV (2002) Large wood and fluvial processes. Freshw Biol 47:601–619. doi: 10.1046/j.1365-2427.2002.00916.x CrossRefGoogle Scholar
  38. Harnish RA, Sharma R, McMichael GA, Langshaw RB, Pearsons TN, Hilborn R (2014) Effect of hydroelectric dam operations on the freshwater productivity of a Columbia River fall Chinook salmon population. Can J Fish Aquat Sci 71:602–615. doi: 10.1139/cjfas-2013-0276 CrossRefGoogle Scholar
  39. Hax CL, Golladay SW (1998) Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. Am Midl Nat 139:210–233CrossRefGoogle Scholar
  40. Hillebrand H, Sommer U (1999) The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnol Oceanogr 44:440–446. doi: 10.4319/lo.1999.44.2.0440 CrossRefGoogle Scholar
  41. Honeyfield D, Maloney K (2015) Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high-quality headwater streams. Hydrobiologia 744:35–47. doi: 10.1007/s10750-014-2054-7 CrossRefGoogle Scholar
  42. Jakob C, Robinson C, Uehlinger U (2003) Longitudinal effects of experimental floods on stream benthos downstream from a large dam. Aquat Sci 65:223–231. doi: 10.1007/s00027-003-0662-9 CrossRefGoogle Scholar
  43. Kopp JF, McKee GD (1979) Methods for chemical analysis of water and wastes National Technical Information Service Springfield, Va, Report No PB 297686 (32319):490Google Scholar
  44. Lancaster J, Hildrew AG (1993) Flow refugia and the microdistribution of lotic macroinvertebrates. J N Am Benthol Soc 12:385–393. doi: 10.2307/1467619 CrossRefGoogle Scholar
  45. Lane CM, Taffs KH, Corfield JL (2003) A comparison of diatom community structure on natural and artificial substrata. Hydrobiologia 493:65–79. doi: 10.1023/A:1025498732371 CrossRefGoogle Scholar
  46. Law RJ (2011) A review of the function and uses of, and factors affecting, stream phytobenthos. Freshw Rev 4:135–166. doi: 10.1608/FRJ-4.1.448 CrossRefGoogle Scholar
  47. Lenzi MA, Mao L, Comiti F (2003) Interannual variation of suspended sediment load and sediment yield in an alpine catchment. Hydrolog Sci J 48:899–915. doi: 10.1623/hysj.48.6.899.51425 CrossRefGoogle Scholar
  48. Lorenzen C (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. doi: 10.4319/lo.1967.12.2.0343 CrossRefGoogle Scholar
  49. Miller SW, Judson S (2014) Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Can J Fish Aquat Sci 71:675–687. doi: 10.1139/cjfas-2013-0562 CrossRefGoogle Scholar
  50. Montgomery DR, Collins BD, Buffington JM, Abbe TB (2003) Geomorphic effects of wood in rivers. In: Gregory SV, Boyer KL, Gurnell AM (eds) The ecology and management of wood in world rivers. American Fishery Society Symposium 37, Bethesda, pp 21–47Google Scholar
  51. Müller-Navarra DC (2008) Food web paradigms: the biochemical view on trophic interactions. Int Rev Hydrobiol 93:489–505. doi: 10.1002/iroh.200711046 CrossRefGoogle Scholar
  52. Muller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, Goldman CR (2004) Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72CrossRefPubMedGoogle Scholar
  53. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77. doi: 10.1038/47469 CrossRefPubMedGoogle Scholar
  54. Northcott K, Andersen DC, Cooper DJ (2007) The influence of river regulation and land use on floodplain forest regeneration in the semi-arid upper Colorado River Basin, USA. River Res Appl 23:565–577. doi: 10.1002/rra.1007 CrossRefGoogle Scholar
  55. Oksanen, J, et al. (2013) Vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan. Accessed 4 Mar 2016
  56. Palmer MA, Arensburger P, Martin AP, Denman DW (1996) Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia 105:247–257. doi: 10.1007/bf00328554 CrossRefPubMedGoogle Scholar
  57. Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20. doi: 10.1007/978-1-4612-0547-0_2 CrossRefGoogle Scholar
  58. Person E, Bieri M, Peter A, Schleiss AJ (2014) Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations. Ecohydrology 7:580–599. doi: 10.1002/eco.1380 CrossRefGoogle Scholar
  59. Poff NL, Ward JV (1989) Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can J Fish Aquat Sci 46:1805–1818. doi: 10.1139/f89-228 CrossRefGoogle Scholar
  60. Poff NL et al (1997) The natural flow regime. Bioscience 47:769–784. doi: 10.2307/1313099 CrossRefGoogle Scholar
  61. Puffer M, Berg OK, Huusko A, Vehanen T, Forseth T, Einum S (2015) Seasonal effects of hydropeaking on growth, energetics and movement of juvenile Atlantic Salmon (Salmo salar). River Res Appl 31(9):1101–1108CrossRefGoogle Scholar
  62. Robinson CT, Tockner K, Burgherr P (2002) Seasonal patterns in macroinvertebrate drift and seston transport in streams of an alpine glacial flood plain. Freshw Biol 47:985–993. doi: 10.1046/j.1365-2427.2002.00835.x CrossRefGoogle Scholar
  63. Robinson CT, Aebischer S, Uehlinger U (2004) Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J N Am Benthol Soc 23:853–867. doi: 10.1899/0887-3593(2004)023<0853:iahrom>2.0.co;2 CrossRefGoogle Scholar
  64. Roni P, Beechie TJ, Pess GR, Hanson KM (2014) Wood placement in river restoration: fact, fiction and future direction. Can J Fish Aquat Sci 72:466–478. doi: 10.1139/cjfas-2014-0344 CrossRefGoogle Scholar
  65. Rosario-Martinez H (2013) phia: post hoc interaction analysis. R package version 0.1–3. http://CRAN.R-project.org/package=phia. Accessed 4 Mar 2016
  66. Sabater S, Gregory SV, Sedell JR (1998) Community dynamics and metabolism of benthic algae colonizing wood rock substrata in a forest stream. J Phycol 34:561–567. doi: 10.1046/j.1529-8817.1998.340561.x CrossRefGoogle Scholar
  67. Saltveit S, Halleraker J, Arnekleiv J, Harby A (2001) Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. Regul Rivers: Res Mgmt 17:609–622. doi: 10.1002/rrr.652 CrossRefGoogle Scholar
  68. Schmutz S et al (2014) Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Res Applic 31:919–930. doi: 10.1002/rra.2795 CrossRefGoogle Scholar
  69. Smolar‐Žvanut N, Klemenčič AK (2013) The impact of altered flow regime on periphyton. In: Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, Chichester, pp 229–243. doi: 10.1002/9781118526576.ch13 CrossRefGoogle Scholar
  70. Smolar-Žvanut N, Mikoš M (2013) The impact of flow regulation caused by hydropower dams on the periphyton community in the Soča River, Slovenia. Hydrolog Sci J 59:1032–1045. doi: 10.1080/02626667.2013.834339 CrossRefGoogle Scholar
  71. Solórzano L, Sharp JH (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–758. doi: 10.4319/lo.1980.25.4.0754 CrossRefGoogle Scholar
  72. Stevenson RJ, Bahls LL (1999) Periphyton protocols revision to rapid bioassessment protocols for use in streams and rivers: periphyton, Benthic macroinvertebrates, and fish. http://nepis.epa.gov/. Accessed 7 Apr 2016
  73. Strandberg U, Taipale SJ, Hiltunen M, Galloway AWE, Brett MT, Kankaala P (2015) Inferring phytoplankton community composition with a fatty acid mixing model. Ecosphere 6:16. doi: 10.1890/ES14-00382.1 CrossRefGoogle Scholar
  74. Suren AM, Riis T (2010) The effects of plant growth on stream invertebrate communities during low flow: a conceptual model. J N Am Benthol Soc 29:711–724. doi: 10.1899/08-127.1 CrossRefGoogle Scholar
  75. Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat Microb Ecol 71:165–178. doi: 10.3354/ame01671 CrossRefGoogle Scholar
  76. Taipale SJ et al (2014) Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95:563–576. doi: 10.1890/13-0650 CrossRefPubMedGoogle Scholar
  77. Torres-Ruiz M, Wehr JD, Perrone AA (2007) Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J N Am Benthol Soc 26:509–522. doi: 10.1899/06-070.1 CrossRefGoogle Scholar
  78. Torres-Ruiz M, Wehr JD, Perrone AA (2010) Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. J N Am Benthol Soc 29:803–813. doi: 10.1899/09-162.1 CrossRefGoogle Scholar
  79. Uehlinger U, Kawecka B, Robinson CT (2003) Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spöl). Aquat Sci 65:199–209. doi: 10.1007/s00027-003-0664-7 CrossRefGoogle Scholar
  80. Voelz NJ, Ward JV (1996) Microdistributions of filter-feeding caddisflies (Insecta: trichoptera) in a regulated Rocky Mountain river. Can J Zool 74:654–666. doi: 10.1139/z96-074 CrossRefGoogle Scholar
  81. Wohl E, Bledsoe BP, Fausch KD, Kramer N, Bestgen KR, Gooseff MN (2016) Management of large wood in streams: an overview and proposed framework for hazard evaluation. JAWRA 52:315–335. doi: 10.1111/1752-1688.12388 Google Scholar
  82. Young P, Cech J Jr, Thompson L (2011) Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Rev Fish Biol Fisheries 21:713–731. doi: 10.1007/s11160-011-9211-0 CrossRefGoogle Scholar
  83. Zolezzi G, Siviglia A, Toffolon M, Maiolini B (2011) Thermopeaking in Alpine streams: event characterization and time scales. Ecohydrol 4:564–576. doi: 10.1002/eco.132 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.School of GeographyQueen Mary University of LondonLondonUK
  2. 2.Sustainable Agro-ecosystems and Bioresources DepartmentFondazione E. Mach, IASMA Research and Innovation CentreSan Michele all’adigeItaly
  3. 3.Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany

Personalised recommendations