Aquatic Sciences

, Volume 79, Issue 3, pp 443–458 | Cite as

Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany

  • Anna Matoušů
  • Roman Osudar
  • Karel Šimek
  • Ingeborg Bussmann
Research Article


The River Elbe, as one of the major waterways of central Europe, is a potential source of high amounts of methane into the North Sea. Twelve sampling cruises from October 2010 until June 2013 were conducted from Hamburg towards the mouth of the Elbe at Cuxhaven. The dynamic of methane concentrations in the water column and its consumption via methane oxidizing bacteria was measured. In addition, physico-chemical parameters were used to estimate their influence on the methanotrophic activity. We observed high methane concentrations at the stations in the area of Hamburg harbour (“upper estuary”) and about 10 times lower concentrations in the lower estuary (median of 416 versus 40 nmol L−1, respectively). The methane oxidation rate mirrored the methane distribution with high values in the upper estuary and low values in the lower estuary (median of 161 versus 10 nmol L−1 day−1, respectively). Methane concentrations were significantly influenced by the river hydrology (falling water level) and the biological oxygen demand while interestingly, no clear relation to the amount of suspended particulate matter (SPM) was found. Methane oxidation rates were significantly influenced by methane concentration and to a lesser extent by temperature. Methane oxidation accounted for 41 ± 12 % of the total loss of methane in summer/fall periods, but for only 5 ± 3 % of the total loss in the winter/spring periods (total loss = methane oxidation + diffusion into the atmosphere). The average sea-air flux of methane was 33 ± 8 g CH4 m−2 y−1. We applied a box model taking into account the residence times of each water parcel depending on discharge and tidal impact. We observed almost stable methane concentrations in the lower estuary, despite a strong loss of methane through diffusion and oxidation. Thus we postulate that losses in the lower Elbe estuary were balanced by additional inputs of methane, possibly from extensive salt marshes near the river mouth.


Estuary Methane Methane budget Methane oxidation River Elbe 



This Project was financially supported by project GAJU 145/2013/D, and by Project GAČR-13-00243S (PI-K. Šimek). I. Bussmann was supported by the Helmholtz society via the program PACES topic 2. A. Matoušů´s stay in the laboratory of the Microbial Ecology group at Helgoland was funded by the German Academic Exchange service (DAAD). Our infinite gratitude belongs to the RV Ludwig Prandtl (Helmholtz-Zentrum Geesthacht, Germany) and its crew; to Kristine Carstens for nutrient analyses; to Karl-Walter Klings for his technician support in the laboratory; to Prof. Hana Šantrůčková and Doc. David Boukal for allowing us to work in the laboratories of the Department of Ecosystem Biology at the Faculty of Science (University of South Bohemia in České Budějovice); and to Matthias Langer for his patient support during the sampling cruises. At least but not last our infinite gratitude belongs to the reviewers and editor for their improvements of the manuscript.

Supplementary material

27_2016_509_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1204 kb)


  1. Abril G, Borges AV (2005) Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions—fluxes and processes: hydroelectric reservoirs and natural environments. Springer, Berlin, pp 187–207Google Scholar
  2. Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181CrossRefGoogle Scholar
  3. Abril G, Commarieu MV, Guérin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52(1):470–475CrossRefGoogle Scholar
  4. Alin SR, Rasera MFFL, Salimonn CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116(G1):G01009CrossRefGoogle Scholar
  5. Amann T, Weiss A, Hartmann J (2012) Carbon dynamics in the freshwater part of the Elbe estuary, Germany: implications of improving water quality. Estuar Coast Shelf Sci 107:112–121CrossRefGoogle Scholar
  6. Amann T, Weiss A, Hartmann J (2015) Inorganic carbon fluxes in the inner Elbe Estuary, Germany. Estuar Coasts 38:192–210CrossRefGoogle Scholar
  7. Anthony SE, Prahl FG, Peterson TD (2012) Methane dynamics in the Willamette River, Oregon. Limnol Oceanogr 57(5):1517–1530CrossRefGoogle Scholar
  8. Bastviken D (2009) Methane. Encyclopedia of inland waters. Academic Press, Oxford, pp 783–805CrossRefGoogle Scholar
  9. Beck M, Brumsack HJ (2012) Biogeochemical cycles in sediment and water column of the Wadden Sea: the example Spiekeroog Island in a regional context. Ocean Coast Manag 68:102–113CrossRefGoogle Scholar
  10. Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res 99:16531–16540CrossRefGoogle Scholar
  11. Bergemann M, Gaumert T (2010) Elbebericht 2008. Ergebnisse des nationalen Überwachungsprogramms Elbe der Bundesländer über den ökologischen und chemischen Zustand der Elbe nach EG-WRRL sowie der Trendentwicklung von Stoffen und Schadstoffgruppen. FGG Elbe. Accessed 23 Sept 2016
  12. Bergemann M, Blöcker G, Harms H, Kerner M, Meyer-Nehls R, Petersen W, Schroeder F (1996) Der Sauerstoffhaushalt der Tideelbe. Die Küste 58:200–261Google Scholar
  13. Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press, Oxford, p 720Google Scholar
  14. Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424CrossRefPubMedGoogle Scholar
  15. Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science—vol 5: biogeochemistry. Academic Press, Waltham, pp 119–161, ISBN 9780080878850, doi: 10.1016/B978-0-12-374711-2.00504-0
  16. Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (randers fjord, scheldt and thames). Limnol Oceanogr 49(5):1630–1641CrossRefGoogle Scholar
  17. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S (2015a) Globally significant greenhouse gas emissions from African inland waters. Nat Geosci 8:637–642. doi: 10.1038/NGEO2486 CrossRefGoogle Scholar
  18. Borges AV, Abril G, Darchambeau F, Teodoru CR, Deborde J, Vidal LO, Lambert T, Bouillon S (2015b) Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers. Sci Rep 5:15614. doi: 10.1038/srep15614 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Bowman J (2006) The Methanotrophs—the families methylococcaceae and methylocystaceae. Prokaryotes 5:266–289Google Scholar
  20. Bussmann I (2005) Methane release through suspension of littoral sediment. Biogeochemistry 74(3):283–302CrossRefGoogle Scholar
  21. Bussmann I, Osudar R, Matousu A (2014) Methane concentrations and methane oxidation rates from Oct 2010 to March 2012 in the Elbe Estuary, from Hamburg to Cuxhaven, Germany. doi: 10.1594/PANGAEA.833923
  22. Bussmann I, Matousu A, Osudar R, Mau S (2015) Assessment of the radio 3H-CH4 tracer technique to measure aerobic methane oxidation in the water column. Limnol Oceanogr Methods 13(6):312–327CrossRefGoogle Scholar
  23. Cole JJ, Caraco NF, Peierls BL (1992) Can phytoplankton maintain a positive carbon balance in a turbid freshwater, tidal estuary? Limnol Oceanogr 37:1608–1617CrossRefGoogle Scholar
  24. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292CrossRefPubMedGoogle Scholar
  25. Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16(4):297–306CrossRefGoogle Scholar
  26. de Angelis MA, Scranton MI (1993) Fate of methane in the Hudson River and estuary. Glob Biogeochem Cycles 7:509–523CrossRefGoogle Scholar
  27. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111(51):18273–18278CrossRefPubMedCentralPubMedGoogle Scholar
  28. Dumestre JF, Guézennec J, Lacaux CG, Delmas R, Richard S, Labroue L (1999) Influence of light intensity on methanotrophic bacterial activity in Petit Saut Reservoir, French Guiana. Appl Environ Microbiol 65:534–539PubMedCentralPubMedGoogle Scholar
  29. Frankignoulle M, Middelburg JJ (2002) Biogases in tidal European estuaries: the Biogest project. Introductive paper to BIOGEST special issue. Biogeochemistry 59:1–4CrossRefGoogle Scholar
  30. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436CrossRefPubMedGoogle Scholar
  31. Garneau M-E, Vincent WF, Terrado R, Lovejoy C (2009) Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J Mar Syst 75:185–197CrossRefGoogle Scholar
  32. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  33. Griffiths RP, Caldwell BA, Cline JD, Broich WA, Morita RJ (1982) Field observations of methane concentrations and oxidation rates in the South-eastern Bering Sea. Appl Environ Microbiol 44:435–446PubMedCentralPubMedGoogle Scholar
  34. Grunwald M, Dellwig O, Beck M, Dippner JW, Freund JA, Kohlmeier C, Schnetger B, Brumsack HJ (2009) Methane in the southern North Sea: sources, spatial distribution and budgets. Estuar Coast Shelf Sci 81(4):445–456CrossRefGoogle Scholar
  35. Hackbusch S (2014) Abundance and activity of methane oxidizing bacteria in the River Elbe Estuary Master thesis, Friedrich Schiller Universität JenaGoogle Scholar
  36. Harley JF, Carvalho L, Dudley B, Heal KV, Rees RM, Skiba U (2015) Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary. Estuar Coast Shelf Sci 153:62–73CrossRefGoogle Scholar
  37. Heintz MB, Mau S, Valentine DL (2012) Physical control on methanotrophic potential in waters of the Santa Monica Basin, Southern California. Limnol Oceanogr 57(2):420–432CrossRefGoogle Scholar
  38. Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PLE (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5(3):335–345CrossRefPubMedGoogle Scholar
  39. Internationale Kommission zum Schutz der Elbe (IKSE) (1995) Die Elbe und ihre Nebenflüsse—Belastung, Trends, Bewertung, Perspektiven. In: Prange A, Furrer R, Einax JW, Lochovský P, Kofalk S (eds) ATV-DVWK Forschungsberichte. ISBN 3-933707-63-3Google Scholar
  40. IPCC, Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadel J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  41. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51(2):1195–1204CrossRefGoogle Scholar
  42. Kerner M (2000) Interactions between local oxygen deficiencies and heterotrophic microbial processes in the Elbe estuary. Limnol Ecol Manag Inland Waters 30(2):137–143CrossRefGoogle Scholar
  43. King GM (1990) Regulation by light of methane emissions from a wetland. Nature 345:513–514CrossRefGoogle Scholar
  44. Koné YJM, Abril G, Delille B, Borges AV (2010) Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100:21–37CrossRefGoogle Scholar
  45. Lofton DD, Whalen SC, Hershey AE (2014) Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia 721(1):209–222CrossRefGoogle Scholar
  46. Marencic HE (2009) The Wadden Sea an introduction. Quality Status Report 2009. Wadden Sea Ecosystem No. 25. Common Wadden Sea SecretariatGoogle Scholar
  47. Marwick TR, Tamooh F, Ogwoka B, Teodoru C, Borges AV, Darchambeau F, Bouillon S (2014) Dynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi-Galana-Sabaki River, Kenya. Biogeosciences 11(2):443–460CrossRefGoogle Scholar
  48. Matousu A, Osudar R, Simek K, Bussmann I (2015). Methane concentrations and methane oxidation rates from June 2012 to June 2013 in the Elbe Estuary, from Hamburg to Cuxhaven, Germany., doi: 10.1594/PANGAEA.855825
  49. Mau S, Gentz T, Körber JH, Torres ME, Römer M, Sahling H, Wintersteller P, Martinez R, Schlüter M, Helmke E (2015) Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences 12:5261–5276. doi: 10.5194/bg-12-5261-2015 CrossRefGoogle Scholar
  50. McAuliffe C (1971) Gas Chromatographic determination of solutes by multiple phase equilibrium. Chem Technol 1:46–51Google Scholar
  51. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde W, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119CrossRefGoogle Scholar
  52. Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31CrossRefPubMedGoogle Scholar
  53. Murase J, Sugimoto A (2005) Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol Oceanogr 50(4):1339–1343CrossRefGoogle Scholar
  54. Musenze RS, Werner U, Grinham A, Udy J, Yuan Z (2014) Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Sci Total Environ 472:719–729CrossRefPubMedGoogle Scholar
  55. Muylaert K, Sabbe K (1999) Spring phytoplankton assemblages in an around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). J Mar Syst 22:133–149CrossRefGoogle Scholar
  56. Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF (2013) Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10(4):2747–2759CrossRefGoogle Scholar
  57. Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337CrossRefGoogle Scholar
  58. Osudar R, Matousu A, Alawi M, Wagner D, Bussmann I (2015) Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuar Coast Shelf Sci. doi: 10.1016/j.ecss.2015.03.028 Google Scholar
  59. Porubsky WP, Weston NB, Moore WS, Ruppel C, Joye SB (2014) Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochim Cosmochim Acta 131:81–97CrossRefGoogle Scholar
  60. Pulliam WM (1993) Carbon dioxide and methane exports from a Southeastern Floodplain Swamp. Ecol Monogr 63(1):29–53CrossRefGoogle Scholar
  61. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53CrossRefGoogle Scholar
  62. Rehder G, Keir RS, Suess E, Pohlmann T (1998) The multiple sources and patterns of methane in North Sea waters. Aquat Geochem 4:403–427CrossRefGoogle Scholar
  63. Røy H, Jae SL, Jansen S, De Beer D (2008) Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53(4):1521–1530CrossRefGoogle Scholar
  64. Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in Shield lakes: the role of nitrogen fixation and oxygen concentration. Limnol Oceanogr 3(21):357–364CrossRefGoogle Scholar
  65. Savoye N, David V, Morisseau F, Etcheber H, Abril G, Billy I, Charlier K, Oggian G, Derriennic H, Sautour B (2012) Origin and composition of particulate organic matter in a macrotidal turbid estuary: the Gironde Estuary, France. Estuar Coast Shelf Sci 108:16–28CrossRefGoogle Scholar
  66. Schlarbaum T, Dähnke K, Bahlmann E, Emeis KC (2010) Dissolved organic nitrogen in the Elbe river and estuary: results of nitrogen isotope investigations. Mar Chem 119:1–17CrossRefGoogle Scholar
  67. Schöl A, Hein B, Wyrwa J, Kirchesch V (2014) Modelling water quality in the Elbe and its estuary—large scale and long term applications with focus on the oxygen budget of the estuary. Die Küste 81:203–232Google Scholar
  68. Schroeder F (1997) Water quality in the Elbe estuary: significance of different processes for the oxygen deficit at Hamburg. Environ Model Assess 2:73–82CrossRefGoogle Scholar
  69. Scranton MI, McShane K (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont Shelf Res 11(1):37–52CrossRefGoogle Scholar
  70. Shelley F, Abdullahi F, Grey J, Trimmer M (2015) Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshw Biol 60(1):150–160CrossRefGoogle Scholar
  71. Silvennoinen H, Liikanen A, Rintala J, Martikainen P (2008) Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90(2):193–208CrossRefGoogle Scholar
  72. Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochemical Cycles 26 (GB0E05)Google Scholar
  73. Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71(11):6746–6752CrossRefPubMedCentralPubMedGoogle Scholar
  74. Ter Braak JF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guids: Software for canonical community ordination (version 4.52). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  75. Upstill-Goddard R, Barnes J (2016) Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem 180:14–23. doi: 10.1016/j.marchem.2016.01.010 CrossRefGoogle Scholar
  76. Upstill-Goddard RC, Barnes J, Owens NJP (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cycles 14(4):1205CrossRefGoogle Scholar
  77. Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J (2009) Response of methanotrophic activity and community structure to temperature changes in a diffusive CH4/O2 counter gradient in an unsaturated porous medium. FEMS Microbiol Ecol 69:202–212CrossRefPubMedGoogle Scholar
  78. Utsumi M, Nojiri Y, Nakamura T, Nozawa T, Otsuki A, Takamura N, Watanabe M, Seki H (1998) Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter. Limnol Oceanogr 43:10–17CrossRefGoogle Scholar
  79. Vandenbruwaene W, Plancke Y, Verwaest T, Mostaert F (2013) Interestuarine comparison: hydrogeomorphology: hydro- and geomorphodynamics of the TIDE estuaries Scheldt, Elbe, Weser and Humber. Version 4. WL Rapporten, 770_62b. Flanders Hydraulics Research: Antwerp, BelgiumGoogle Scholar
  80. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382CrossRefGoogle Scholar
  81. Wanninkhof R, Asher WE, Ho DT, Sweeney CS, McGillis WR (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244CrossRefGoogle Scholar
  82. Wernecke G, Flöser G, Korn S, Weitkamp C, Michaelis W (1994) First measurements of the methane concentration in the North Sea with a new in situ device. Bull Geol Soc Den 41:5–11Google Scholar
  83. Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120(1–3):163–189CrossRefGoogle Scholar
  84. Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and sea water. J Chem Eng Data 24(4):356–360CrossRefGoogle Scholar
  85. Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke HD, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland roads: 45 years of change. Estuar Coasts 33:295–310. doi: 10.1007/s12237-009-9228-y,hdl:10013/epic.33638 CrossRefGoogle Scholar
  86. Wolfstein K, Kies L (1995) A case study on the oxygen budget in the freshwater part of the Elbe estuary. 3. Variations in phytoplankton pigments in the Elbe before and during the oxygen minima in 1992 and 1993. Archiv für Hydrobiologie (Supplement) 110:39–54Google Scholar
  87. Wu CS, Røy H, de Beer D (2015) Methanogenesis in sediments of an intertidal sand flat in the Wadden Sea. Estuar Coast Shelf Sci 164:39–45CrossRefGoogle Scholar
  88. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  89. Zaiss U, Winter P, Kaltwasser H (1982) Microbial methane oxidation in the River Saar. Zeitschrift fur Allgemeine Mikrobiologie 2(22):139–148CrossRefGoogle Scholar
  90. Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F (2008) Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91:71–84CrossRefGoogle Scholar
  91. Zimmermann H (1997) The microbial community on aggregates in the Elbe Estuary. Aquat Microb Ecol 13:37–46CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Faculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biology Centre CAS, v.v.i.Institute of HydrobiologyČeské BudějoviceCzech Republic
  3. 3.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungPotsdamGermany
  4. 4.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungHelgolandGermany

Personalised recommendations