Aquatic Sciences

, Volume 78, Issue 2, pp 367–379 | Cite as

Impact of terrestrial runoff on organic matter, trophic state, and phytoplankton in a tropical, upland reservoir

  • Duc Anh TrinhEmail author
  • Thi Nguyet Minh Luu
  • Quan Hong Trinh
  • Hai Sy Tran
  • Tien Minh Tran
  • Thi Phuong Quynh Le
  • Thuy Thi Duong
  • Didier Orange
  • Jean Louis Janeau
  • Thomas Pommier
  • Emma Rochelle-Newall
Research Article


The impact of organic matter inputs from agricultural, forest and domestic sources on aquatic processes has been considerably less studied in tropical reservoirs relative to temperate systems despite the high number of these small aquatic systems in the tropics. Here we present the results of an in situ mesocosm study that examined the impact of allochthonous organic matter on a headwater reservoir in Northern Vietnam. We examined the impact of wastewater and soils from floodplain paddies, Acacia mangium plantations and from upland slopes on the metabolic status of the reservoir. The addition of floodplain paddy soils to the reservoir water led to a rapid switch in metabolic status from net autotrophic to net heterotrophic. In contrast, the addition of wastewater in low concentrations had less impact on the metabolic status of the reservoir, reflecting the low population density in the area. The addition of floodplain paddy soils also increased phytoplankton diversity and evenness relative to the control. In summary, soils from floodplain paddies and from A. mangium plantations had the highest impact on the reservoir, with upland soils and wastewater having less of an impact. We also found that primary production in this reservoir was nitrogen limited. In order to avoid accelerating the impact of runoff on the reservoir, future management options should perhaps focus on minimizing water and sediment runoff from upstream paddy fields and from A. mangium plantations. These results also underline the importance of studying these upland tropical water bodies that can contribute an important but, on the whole, ignored part of the global carbon balance.


Limiting factor Aquatic mesocosm Incubation Vietnam 



This research was funded by the LOTUS N° 44/2012/HĐ-NĐT and the NAFOSTED No. 104.99-2014.41, Ministry of Science and Technology, Vietnam (to Trinh Anh Duc); PHC Hoa Sen Lotus N° 23970QM (to Emma Rochelle-Newall), JEAI BioGEAQ (to Trinh Anh Duc, Didier Orange and IRD), the Institute of Chemistry, Vietnam Academy of Science and Technology, Vietnam, the French Institut de Recherche pour le Développement (IRD) and the UMR iEES-Paris. The MSEC (Multi-Scale Environmental Changes; network is thanked for providing meteorological data. The lead author is also grateful to the PANACEA Erasmus Mundus Program for support in writing this paper.

Supplementary material

27_2015_439_MOESM1_ESM.doc (172 kb)
Supplementary material 1 (DOC 172 kb)


  1. Bechmann ME, Kleinman PJA, Sharpley AN, Saporito LS (2005) Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. J Environ Qual 34:2301–2309. doi: 10.2134/jeq2004.0415 CrossRefPubMedGoogle Scholar
  2. Bormans M, Ford PW, Fabbro L, Hancock G (2004) Onset and persistence of cyanobacterial blooms in a large impounded tropical river. Australia Mar Freshwa Res 55:1–15. doi: 10.1071/mf03045 CrossRefGoogle Scholar
  3. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  4. Castella J-C (2009) Assessing the role of learning devices and geovisualisation tools for collective action in natural resource management: experiences from Vietnam. J Environ Manag 90:1313–1319. doi: 10.1016/j.jenvman.2008.07.010 CrossRefGoogle Scholar
  5. Causse J et al (2015) Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J Hydro-Environ Res. doi: 10.1016/j.jher.2015.03.003 Google Scholar
  6. Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. APAH, Washington, DCGoogle Scholar
  7. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110CrossRefGoogle Scholar
  8. Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568CrossRefPubMedGoogle Scholar
  9. Curtin D, Wright CE, Beare MH, McCallum FM (2006) Hot water-extractable nitrogen as an indicator of soil nitrogen availability. Soil Sci Soc Am J 70:1512–1521. doi: 10.2136/sssaj2005.0338 CrossRefGoogle Scholar
  10. Dang TH, Coynel A, Orange D, Blanc G, Etcheber H, Le LA (2010) Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): temporal variability and dam-reservoir impact. Sci Total Environ 408:4654–4664. doi: 10.1016/j.scitotenv.2010.07.007 CrossRefPubMedGoogle Scholar
  11. Darchambeau F, Sarmento H, Descy JP (2014) Primary production in a tropical large lake: the role of phytoplankton composition. Sci Total Environ 473–474:178–188. doi: 10.1016/j.scitotenv.2013.12.036 CrossRefPubMedGoogle Scholar
  12. del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151CrossRefGoogle Scholar
  13. Do DP, Orange D, Migraine JB, Tran DT, Nguyen CV (2006) Applying GIS-assisted modelling to predict soil erosion for a small agricultural watershed within sloping lands in Northern Vietnam. Sustainable watershed management in cultivated sloping lands of SEA. In: 2nd International Conference on Sustainable sloping lands and watershed management, pp 221–228. LuangPhrabang, Laos, 12–15 Dec 2006Google Scholar
  14. Downing JA et al (1999) The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochem 46:109–148Google Scholar
  15. Downing J, Watson S, McCauley E (2001) Predicting Cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908CrossRefGoogle Scholar
  16. Duong TT et al (2013) Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. J Appl Phycol 25:1065–1075. doi: 10.1007/s10811-012-9919-9 CrossRefGoogle Scholar
  17. Galy-Lacaux C, Delmas R, Kouadio G, Richard S, Gosse P (1999) Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Glob Biogeochem Cycl 13:503–517. doi: 10.1029/1998gb900015 CrossRefGoogle Scholar
  18. Hotzel G, Croome R (1999) A phytoplankton methods manual for Australian freshwaters, vol OP22/99. Land and Water Resources Research and Development Corporation, CanberraGoogle Scholar
  19. Humbert J-F, Dorigo U, Cecchi P, Le Berre B, Debroas D, Bouvy M (2009) Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ Microbiol 11:2339–2350. doi: 10.1111/j.1462-2920.2009.01960.x CrossRefPubMedGoogle Scholar
  20. Jandl R, Sollins P (1997) Water-extractable soil carbon in relation to the belowground carbon cycle. Biol Fertil Soils 25:196–201CrossRefGoogle Scholar
  21. Janeau JL et al. (2014) Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Ag Wat Man 146:314–323 doi:
  22. Jouquet P, Janeau J-L, Pisano A, Hai Tran S, Orange D, Luu Thi Nguyet M, Valentin C (2012) Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: a rainfall simulation experiment. Appl Soil Ecol 61:161–168CrossRefGoogle Scholar
  23. Karlson B, Cusack C, Bresnan E (2010) Microscopic and molecular methods for quantitative phytoplankton analysis, vol 55. UNESCO, ParisGoogle Scholar
  24. Kim B, Choi K, Kim C, Lee UH, Kim YH (2000) Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res 34:3495–3504. doi: 10.1016/s0043-1354(00)00104-4 CrossRefGoogle Scholar
  25. Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Zeitschrift für analytische Chemie 22:66–383CrossRefGoogle Scholar
  26. Kratzer CR, Brezonik PL (1981) A Carlson-type trophic state index for nitrogen in Florida lakes. J Am Water Resour As 17:713–715. doi: 10.1111/j.1752-1688.1981.tb01282.x CrossRefGoogle Scholar
  27. Le TPQ, Billen G, Garnier J, Thery S, Fezard C, Minh CV (2005) Nutrient (N, P) budgets for the Red River basin (Vietnam and China). Glob Biogeochem Cycl 19:GB2022. doi: 10.1029/2004GB002405 Google Scholar
  28. Le TPQ, Ho CT, Duong TT, Rochelle-Newall E, Dang DK, Hoang TS (2014) Nutrient budgets (N and P) for the Nui Coc reservoir catchment (North Vietnam). Ag Wat Man  10.1016/j.agwat.2014.04.014:152-161 doi: 10.1016/j.agwat.2014.04.014
  29. Luu TNM, Garnier J, Billen G, Le TPQ, Nemery J, Orange D, Le L (2012) N, P, Si budgets for the Red River Delta (northern Vietnam): how the delta affects river nutrient delivery to the sea. Biogeochem 107:241–259. doi: 10.1007/s10533-010-9549-8 CrossRefGoogle Scholar
  30. Meybeck M (2006) Origins and behaviors of carbon species in world rivers. In: Roose EJ, Lal R, Feller C, Barthès B, Stewart BA (eds) Soil erosion and carbon dynamics. Taylor and Francis, pp 209–238 Google Scholar
  31. Obernosterer I, Herndl GJ (1995) Phytoplankton extracellular release and bacterial growth: dependance on the inorganic N: P ratio. Mar Ecol Prog Ser 116:247–257CrossRefGoogle Scholar
  32. Pedersen MF, Hansen PJ (2003) Effects of high pH on the growth and survival of six marine heterotrophic protists. Mar Ecol Prog Ser 260:33–41CrossRefGoogle Scholar
  33. Podwojewski P, Orange D, Jouquet P, Valentin C, Nguyen VT, Janeau JL, Tran DT (2008) Land-use impacts on surface runoff and soil detachment within agricultural sloping lands in Northern Vietnam. Catena 74:109–118CrossRefGoogle Scholar
  34. Pommier T et al (2014) Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential. FEMS Microbiol Ecol 90:622–632. doi: 10.1111/1574-6941.12421 CrossRefPubMedGoogle Scholar
  35. Relyea RA (2006) The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15:503–511. doi: 10.1007/s10646-006-0086-0 CrossRefPubMedGoogle Scholar
  36. Rochelle-Newall E, Hulot FD, Janeau JL, Merroune A (2014a) CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environ Monit Assess 186:589–596. doi: 10.1007/s10661-013-3401-2 CrossRefPubMedGoogle Scholar
  37. Rochelle-Newall EJ, Ridame C, Dimier-Hugueney C, L’Helguen S (2014b) Impact of iron limitation on primary production (dissolved and particulate) and secondary production in cultured Trichodesmium sp. Aquat Microb Ecol 72:143–153. doi: 10.3354/ame01690 CrossRefGoogle Scholar
  38. Rochelle-Newall EJ, Nguyen TMH, Le TPQ, Sengtaheuanghoung O, Ribolzi O (2015) A short review of faecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Front Microbiol Aquat microbiol 6:308. doi: 10.3389/fmicb.2015.00308 Google Scholar
  39. Servais P, Barillier A, Garnier J (1995) Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters. Int J Limnol 31:75–80. doi: 10.1051/limn/1995005 CrossRefGoogle Scholar
  40. Sidle RC, Ziegler AD, Negishi JN, Nik AR, Siew R, Turkelboom F (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecol Manag 224:199–225. doi: 10.1016/j.foreco.2005.12.019 CrossRefGoogle Scholar
  41. Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671CrossRefPubMedGoogle Scholar
  42. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. doi: 10.1016/s0269-7491(99)00091-3 CrossRefPubMedGoogle Scholar
  43. Thothong W et al (2011) Impact of land use change and rainfall on sediment and carbon accumulation in a water reservoir of North Thailand. Ag Ecosys Environ 140:521–533. doi: 10.1016/j.agee.2011.02.006 CrossRefGoogle Scholar
  44. Tran DT, Orange D, Podwojewski P, Do DP, Thai P, Maugin J, Pham DR (2003) Soil erosion and land use in the Dong Cao catchment in Northern Vietnam. In: SEA I (ed) Soil research to land and water management: harmonizing people and nature. Annual Meeting and 7th MSEC Assembly, Thailand, 2003. IWMI-ADB project, Maglinao AR (ed), pp 165–179Google Scholar
  45. Tranvik LJ et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298 CrossRefGoogle Scholar
  46. Trinh AD, Vachaud G, Bonnet M-P, Prieur N, Loi VD, Anh LL (2007) Experimental investigation and modelling approach of the impact of urban wastewater on a tropical river; a case study of the Nhue River, Hanoi, Viet Nam. J Hydrol 334:347–358. doi: 10.1016/j.jhydrol.2006.10.022 CrossRefGoogle Scholar
  47. Trinh AD, Nguyen HG, Vachaud G, Sung-Uk C (2009) Application of excess carbon dioxide partial pressure (EpCO2) to assessment of trophic state of surface water in Red River Delta of Vietnam. Int J Environ Stud 66:27–47CrossRefGoogle Scholar
  48. Trinh AD, Meysman F, Rochelle-Newall EJ, Bonnet M-P (2012) Quantification of sediment water interactions in a polluted tropical river through biogeochemical modeling. Glob Biogeochem Cycl 26:3010. doi: 10.1029/2010GB003963 CrossRefGoogle Scholar
  49. Valentin C et al (2008) Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. Ag Ecosys Environ 128:225–238. doi: 10.1016/j.agee.2008.06.004 CrossRefGoogle Scholar
  50. Vien TD (2003) Culture, environment, and farming systems in Vietnam’s Northern mountain region. Southeast Asian Stud 41:180–205Google Scholar
  51. Xue ND, Zhang D, Xu XB (2006) Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir. Water Res 40:183–194. doi: 10.1016/j.watres.2005.07.044 CrossRefPubMedGoogle Scholar
  52. Yamashita Y, Kloeppel BD, Knoepp J, Zausen GL, Jaffe R (2011) Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14:1110–1122. doi: 10.1007/s10021-011-9469-z CrossRefGoogle Scholar
  53. Yang H, Xing Y, Xie P, Ni L, Rong K (2008) Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environ Pollut 151:559–568. doi: 10.1016/j.envpol.2007.04.006 CrossRefPubMedGoogle Scholar
  54. Yen Bui Tan et al (2014) Lumped surface and sub-surface runoff for erosion modeling within a small hilly watershed in northern Vietnam. Hydrol Proc 28:2961–2974. doi: 10.1002/hyp.9860 Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Duc Anh Trinh
    • 1
    • 2
    Email author
  • Thi Nguyet Minh Luu
    • 1
  • Quan Hong Trinh
    • 1
  • Hai Sy Tran
    • 3
  • Tien Minh Tran
    • 3
  • Thi Phuong Quynh Le
    • 4
  • Thuy Thi Duong
    • 5
  • Didier Orange
    • 6
    • 9
  • Jean Louis Janeau
    • 6
  • Thomas Pommier
    • 7
  • Emma Rochelle-Newall
    • 6
    • 8
  1. 1.Institute of Chemistry (ICH)Vietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Department of Earth SciencesUppsala UniversityUppsalaSweden
  3. 3.Soils and Fertilizers Research Institute (SFRI)Vietnam Academy of Agricultural SciencesHanoiVietnam
  4. 4.Institute of Natural Products Chemistry (INPC)Vietnam Academy of Science and TechnologyHanoiVietnam
  5. 5.Institute of Environmental Technology (IET)Vietnam Academy of Science and TechnologyHanoiVietnam
  6. 6.Institut de Recherche pour le Développement (IRD), iEES-Paris UMR 242, c/o Soils and Fertilizers Research Institute (SFRI)HanoiVietnam
  7. 7.UMR CNRS 5557, Laboratoire d’Ecologie MicrobienneUniversité Lyon1, Université de Lyon, USC INRA 1364Villeurbanne CedexFrance
  8. 8.Institut de Recherche pour le Développement (IRD), iEES -Paris, UMR 242BondyFrance
  9. 9.Institut de Recherche pour le Développement (IRD), Eco and Sols, UMR 210MontpellierFrance

Personalised recommendations