Aquatic Sciences

, Volume 78, Issue 2, pp 255–265 | Cite as

Stable isotopes reveal food web modifications along the upstream–downstream gradient of a temperate stream

  • Nicolas Hette-TronquartEmail author
  • Jérôme Belliard
  • Evelyne Tales
  • Thierry Oberdorff
Research Article


The upstream–downstream gradient (UDG) is a key feature of streams. For instance food webs are assumed to change from upstream to downstream. We tested this hypothesis in a small European river catchment (937 km2), and examined whether food web modifications are related to structural (i.e. food web composition) or functional changes (i.e. alteration of linkages within the web). We adopted a double approach at two levels of organisation (assemblage and species levels) using two isotopic metrics (isotopic space area and isotopic niche overlap), and proposed a new hypothesis-testing framework for exploring the dominant feeding strategy within a food web. We confirmed that the UDG influenced stream food webs, and found that food web modifications were related to both structural and functional changes. The structural change was mainly related to an increase in species richness, and induced functional modifications of the web (indirect effect). In addition, the UDG also modified the functional features of the web directly, without changing the web composition. The proposed framework allowed relating the direct effect of the UDG to a diet specialisation of the species, and the indirect effect via the structural changes to a generalist feeding strategy. The framework highlights the benefits of conducting the double approach, and provides a foundation for future studies investigating the dominant feeding strategy that underlies food web modifications.


Food webs Stable isotopes Longitudinal gradient Species richness Fish density Stream ecology 



Grateful acknowledgment is expressed to HEF team (part of Hydrosystems and Bioprocesses Research Unit at Irstea Antony) for assistance in the field and sample preparation. We thank Adrien Rey and the regional natural park “Parc Naturel Régional de la haute vallée de Chevreuse” for advice and participation to field work. Olivier Delaigue gave helpful recommendations for statistical analyses. Michel Hénin, head of the RGIS department at the “Institut d’Aménagement et d’Urbanisme d’île-de-France’’ kindly provided the land cover data. We thank the anonymous reviewers, who helped improve the previous versions of this manuscript. This work was partly funded by the Interdisciplinary Research Program on the Seine River Environment (PIREN-Seine— and by the project 33 of the framework agreement between Irstea and the French National Agency for Water and Aquatic Environments (ONEMA).

Supplementary material

27_2015_421_MOESM1_ESM.pdf (285 kb)
Supplementary material 1 (PDF 285 kb)


  1. A.F.S. (American_Fisheries_Society) (2004) A.I.o.F.R.B. (American_Institute_of_Fishery_Research_Biologists), A.S.o.I.a.H. (American_Society_of_Ichtyologists_and_Herpetologists). Guidelines for the Use of Fishes in Research. American Fisheries Society, Bethesda, MAGoogle Scholar
  2. Araújo M, Bolnick D, Layman C (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x CrossRefPubMedGoogle Scholar
  3. Arim M, Abades S, Laufer G, Loureiro M, Marquet P (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153. doi: 10.1111/j.1600-0706.2009.17768.x CrossRefGoogle Scholar
  4. Bearhop S, Adams C, Waldron S, Fuller R, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012. doi: 10.1111/j.0021-8790.2004.00861.x CrossRefGoogle Scholar
  5. Belliard J, Boët P, Tales E (1997) Regional and longitudinal patterns of fish community structure in the Seine river basin, France. Environ Biol Fish 50:133–147. doi: 10.1023/A:1007353527126 CrossRefGoogle Scholar
  6. Chang HY, Wu SH, Shao KT, Kao WY, Maa CJ, Jan RQ, Liu LL, Tzeng CS, Hwang JS, Hsieh HL, Kao SJ, Chen YK, Lin HJ (2012) Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in taiwan. Freshw Biol 57:1839–1853. doi: 10.1111/j.1365-2427.2012.02843.x CrossRefGoogle Scholar
  7. Costas N, Pardo I (2014) Isotopic variability in a stream longitudinal gradient: implications for trophic ecology. Aquat Sci. doi: 10.1007/s00027-014-0383-2 Google Scholar
  8. Gause G (1934) The struggle for existence. Williams and Wilkins, BaltimoreCrossRefGoogle Scholar
  9. Hammerschlag-Peyer CM, Yeager LA, Araújo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One 6:e27104. doi: 10.1371/journal.pone.0027104 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hette-Tronquart N, Mazeas L, Reuilly-Manenti L, Zahm A, Belliard J (2012) Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Commun Mass Spectrom 26:1603–1608. doi: 10.1002/rcm.6265 CrossRefPubMedGoogle Scholar
  11. Hoeinghaus D, Zeug S (2008) Can stable isotope ratios provide for community-wide measures of trophic structure? Comment. Ecol 89:2353–2357. doi: 10.1890/07-1143.1 CrossRefGoogle Scholar
  12. Holt R (1996) Food webs: integration of patterns and dynamics. Temporal and spatial aspects of food web structure and dynamics. Chapman & Hall, New York, pp 255–257Google Scholar
  13. Ibañez C, Oberdorff T, Teugels G, Mamononekene V, Lavoué S, Fermon Y, Paugy D, Toham A (2007) Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecol Freshw Fish 16:315–334. doi: 10.1111/j.1600-0633.2006.00222.x CrossRefGoogle Scholar
  14. Ibañez C, Belliard J, Hughes R, Irz P, Kamdem-Toham A, Lamouroux N, Tedesco P, Oberdorff T (2009) Convergence of temperate and tropical stream fish assemblages. Ecograph 32:658–670. doi: 10.1111/j.1600-0587.2008.05591.x CrossRefGoogle Scholar
  15. Jackson A, Inger R, Parnell A, Bearhop S (2011) Comparing isotopic niche widths among and within communities: siber-stable isotope bayesian ellipses in R. J Anim Ecol 80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x CrossRefPubMedGoogle Scholar
  16. Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7:e31757. doi: 10.1371/journal.pone.0031757 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jepsen D, Winemiller K (2002) Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96:46–55. doi: 10.1034/j.1600-0706.2002.960105.x CrossRefGoogle Scholar
  18. Layman C, Arrington D, Montaña C, Post D (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecol 88:42–48. doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2Google Scholar
  19. Layman C, Araújo M, Boucek R, Hammerschlag-Peyer C, Harrison E, Jud Z, Matich P, Rosenblatt A, Vaudo J, Yeager L, Post D, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. doi: 10.1111/j.1469-185X.2011.00208.x CrossRefPubMedGoogle Scholar
  20. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  21. MacGarvey D, Hughes R (2008) Longitudinal zonation of pacific northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia 2:311–321. doi: 10.1643/CE-07-020 CrossRefGoogle Scholar
  22. Mason N, Lanoiselée C, Mouillot D, Wilson J, Argillier C (2008) Does niche overlap control relative abundance in french lacustrine fish communities? A new method incorporating functional traits. J Anim Ecol 77:661–669. doi: 10.1111/j.1365-2656.2008.01379.x CrossRefPubMedGoogle Scholar
  23. Matthews W (1998) Patterns in freshwater fish ecology. Kluwer Academic Publishers, NorwellCrossRefGoogle Scholar
  24. Minns CK (1995) Allometry of home range size in lake and river fishes. Can J Fish Aquat Sci 52:1499–1508CrossRefGoogle Scholar
  25. Newsome S, Del Rio C, Bearhop S, Phillips D (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2Google Scholar
  26. O’Neil B, Thorp J (2014) Untangling food-web structure in an ephemeral ecosystem. Freshw Biol 59:1462–1473. doi: 10.1111/fwb.12358 CrossRefGoogle Scholar
  27. Oberdorff T, Guilbert E, Lucchetta JC (1993) Patterns of fish species richness in the Seine river basin, France. Hydrobiol 259:157–167. doi: 10.1007/BF00006595 CrossRefGoogle Scholar
  28. Oberdorff T, Pont D, Hugueny B, Chessel D (2001) A probabilistic model characterizing riverine fish communities of French rivers: a framework for environmental assessment. Freshw Biol 46:399–415. doi: 10.1046/j.1365-2427.2001.00669.x CrossRefGoogle Scholar
  29. Oberdorff T, Pont D, Hugueny B, Porcher J (2002) Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshw Biol 47:1720–1734. doi: 10.1046/j.1365-2427.2002.00884.x CrossRefGoogle Scholar
  30. Petts G, Calow P (1996) River biota: diversity and dynamics. Blackwell Science, OxfordGoogle Scholar
  31. Post D, Takimoto G (2007) Proximate structural mechanisms for variation in food-chain length. Oikos 116:775–782. doi: 10.1111/j.2007.0030-1299.15552.x CrossRefGoogle Scholar
  32. Post D, Layman C, Arrington D, Takimoto G, Quattrochi J, Montaña C (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi: 10.1007/s00442-006-0630-x CrossRefPubMedGoogle Scholar
  33. Power M, Dietrich W (2002) Food webs in river networks. Ecol Res 17:451–471. doi: 10.1046/j.1440-1703.2002.00503.x CrossRefGoogle Scholar
  34. Rasmussen J, Trudeau V, Morinville G (2009) Estimating the scale of fish feeding movements in rivers using δ13C signature gradients. J Anim Ecol 78:674–685. doi: 10.1111/j.1365-2656.2008.01511.x CrossRefPubMedGoogle Scholar
  35. Rice S, Greenwood M, Joyce C (2001) Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Can J Fish Aquat Sciences 58:824–840. doi: 10.1139/cjfas-58-4-824 CrossRefGoogle Scholar
  36. Sabo J, Finlay J, Kennedy T, Post D (2010) The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330:965–967. doi: 10.1126/science.1196005 CrossRefPubMedGoogle Scholar
  37. Sedell J, Richey J, Swanson F (1989) The river continuum concept: a basis for the expected ecosystem behaviour of very large rivers? Can Spec Publ Fish Aquat Sci 106:49–55Google Scholar
  38. Semmens B, Ward E, Moore J, Darimont C (2009) Quantifying inter-and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One 4. doi: 10.1371/journal.pone.0006187
  39. Syväranta J, Lensu A, Marjomäki T, Oksanen S, Jones R (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8. doi: 10.1371/journal.pone.0056094
  40. Thompson R, Brose U, Dunne J, Hall R, Hladyz S, Kitching R, Martinez N, Rantala H, Romanuk T, Stouffer D, Tylianakis J (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697. doi: 10.1016/j.tree.2012.08.005 CrossRefPubMedGoogle Scholar
  41. Tomanova S, Tedesco P, Campero M, Van Damme P, Moya N, Oberdorff T (2007) Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the river continuum concept. Fundam Appl Limnol 170:233–241. doi: 10.1127/1863-9135/2007/0170-0233 CrossRefGoogle Scholar
  42. Townsend C, Hildrew A (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol 31:265–275CrossRefGoogle Scholar
  43. Vander Zanden M, Rasmussen J (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecol 80:1395–1404CrossRefGoogle Scholar
  44. Vannote R, Minshall G, Cummins K, Sedell J, Cushing C (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  45. Verneaux J, Schmitt A, Verneaux V, Prouteau C (2003) Benthic insects and fish of the doubs river system: typological traits and the development of a species continuum in a theoretically extrapolated watercourse. Hydrobiol 490:63–74. doi: 10.1023/A:1023454227671 CrossRefGoogle Scholar
  46. Werner R, Brand W (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519. doi: 10.1002/rcm.258 CrossRefPubMedGoogle Scholar
  47. Winemiller K, Hoeinghaus D, Pease A, Esselman P, Honeycutt R, Gbanaador D, Carrera E, Payne J (2011) Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a mesoamerican coastal river. River Res Appl 27:791–803. doi: 10.1002/rra.1396 CrossRefGoogle Scholar
  48. Wootton J (1994) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecol 75:151–165CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Nicolas Hette-Tronquart
    • 1
    Email author
  • Jérôme Belliard
    • 1
  • Evelyne Tales
    • 1
  • Thierry Oberdorff
    • 2
  1. 1.Irstea, UR HBANAntonyFrance
  2. 2.UMR CNRS 7208-IRD 207-MNHN-UPMC-UNICAEN “Biologie des Organismes et Ecosystemes Aquatiques”, Museum National d’Histoire NaturelleParisFrance

Personalised recommendations