Aquatic Sciences

, Volume 77, Issue 2, pp 183–196 | Cite as

Short-term and seasonal variability of oxygen fluxes at the sediment–water interface in a riverine lake

  • Erni MurniatiEmail author
  • Sebastian Geissler
  • Andreas Lorke
Research Article


In situ measurements of sediment-water oxygen fluxes conducted in a riverine lake during different seasons were analyzed with the aim of quantifying the combined effects of hydrodynamic forcing and seasonal changes in temperature on sediment oxygen uptake rate. Oxygen fluxes measured using the eddy correlation (EC) technique varied widely between −6.4 and −84 mmol m−2 day−1, while variations observed on hourly time scales were of comparable magnitude to seasonal variations. Oxygen fluxes were most strongly correlated to current speed in the benthic boundary layer and water depth, which both co-varied with discharge, temperature, and oxygen concentration. A direct correlation of measured fluxes with temperature and corresponding seasonal flux variations could not be observed. To explore the potential effect of temperature on oxygen fluxes, we applied a simplified analytical model, which couples the effect of hydrodynamic forcing with a temperature-dependent oxygen consumption rate within the sediment. The results suggest that the flux is a non-linear function of both variables and both can have comparable effects on the magnitude of the oxygen fluxes. The model confirms our observation that short-term variations of oxygen fluxes in response to hydrodynamic forcing can mask longer-term seasonal variations driven by temperature. The model further indicates that the magnitude and form of the temperature dependence of oxygen uptake and mineralization rates in freshwater sediments obtained from laboratory incubations can be strongly affected by flow conditions during incubations. We conclude that predictions of oxygen uptake and mineralization rates under changing climatic conditions should also take potential changes of flow conditions into account.


Hydrodynamics Oxygen flux Riverine lakes Sediment–water interface 



We thank the German Federal Institute of Hydrology (BfG) for providing bathymetry data for the Havel River, the Waterways and Navigation Office (WSA) Berlin for providing boats and facilities for our measurements, A. Glud (University of Southern Denmark) for the oxygen microsensors, and C. E. Bluteau (University of Western Australia) for sharing the Matlab script for the inertial dissipation method. This study was part of the KLIWAS research program of the German Federal Ministry of Transport, Building, and Urban Development (BMVBS). EM was funded by a scholarship of the German Academic Exchange Service (DAAD). We thank and gratefully acknowledge P. Berg and two anonymous reviewers for their critical and constructive comments that helped improve the manuscript.


  1. Berg P, Roy H, Janssen F, Meyer V, Jorgensen BB, Huettel M, de Beer D (2003) Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar Ecol Prog Ser 261:75–83CrossRefGoogle Scholar
  2. Berg P, Long MH, Huettel M, Rheuban JE, McGlathery KJ, Howarth RW, Foreman KH, Giblin AE, Marino R (2013) Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnol Oceanogr 58:1329–1343. doi: 10.4319/lo.2013.58.4.1329 Google Scholar
  3. Bluteau CE, Jones NL, Ivey GN (2011) Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnol Oceanogr Methods 9:302–321. doi: 10.4319/lom.2011.9.302 CrossRefGoogle Scholar
  4. Brand A, McGinnis DF, Wehrli B, Wüest A (2008) Intermittent oxygen flux from the interior into the bottom boundary of lakes as observed by eddy correlation. Limnol Oceanogr 53(5):1997–2006. doi: 10.4319/lo.2008.53.5.1997 CrossRefGoogle Scholar
  5. Bryant LD, Lorrai C, McGinnis DF, Brand A, Wueest A, Little JC (2010) Variable sediment oxygen uptake in response to dynamic forcing. Limnol Oceanogr 55(2):950–964. doi: 10.4319/lo.2009.55.2.0950 CrossRefGoogle Scholar
  6. Cai W-J, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–131CrossRefGoogle Scholar
  7. Chipman L, Huettel M, Berg P, Meyer V, Klimant I, Glud R, Wenzhoefer F (2012) Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems. Limnol Oceanogr Methods 10:304–316. doi: 10.4319/lom.2012.10.304 CrossRefGoogle Scholar
  8. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  9. Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64(1):55–65. doi: 10.1007/s00027-002-8054-0 CrossRefGoogle Scholar
  10. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289. doi: 10.1080/17451000801888726 CrossRefGoogle Scholar
  11. Glud RN, Berg P, Fossing H, Jørgensen BB (2007) Effect of the diffusive boundary layer on benthic mineralization and O2 distribution: a theoretical model analysis. Limnol Oceanogr 52:547–557CrossRefGoogle Scholar
  12. Glud RN, Berg P, Hume A, Batty P, Blicher ME, Lennert K, Rysgaard S (2010) Benthic O2 exchange across hard-bottom substrates quantified by eddy correlation in a sub-Arctic fjord. Mar Ecol Prog Ser 417:1–12. doi: 10.3354/meps08795 CrossRefGoogle Scholar
  13. Goring D, Nikora V (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. doi: 10.1061/(ASCE)0733-9429(2002).128:1(117) CrossRefGoogle Scholar
  14. Granéli W (1978) Sediment oxygen uptake in south Swedish lakes. Oikos 30(1):7–16. doi: 10.2307/3543519 CrossRefGoogle Scholar
  15. Granéli W (1979) A comparison of carbon dioxide production and oxygen uptake in sediment cores from four south Swedish lakes. Ecography 2(1):51–57. doi: 10.1111/j.1600-0587.1979.tb00681.x CrossRefGoogle Scholar
  16. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–481. doi: 10.1038/nature09186 CrossRefPubMedGoogle Scholar
  17. Han P, Bartels DM (1996) Temperature dependence of oxygen diffusion in H2O and D2O. J Phys Chem US 100(13):5597–5602. doi: 10.1021/Jp952903y CrossRefGoogle Scholar
  18. Higashino M, O’Connor B, Hondzo M, Stefan H (2008) Oxygen transfer from flowing water to microbes in an organic sediment bed. Hydrobiologia 614(1):219–231. doi: 10.1007/s10750-008-9508-8 CrossRefGoogle Scholar
  19. Holtappels M, Lorke A (2011) Estimating turbulent diffusion in a benthic boundary layer. Limnol Oceanogr Methods 9:29–41. doi: 10.4319/lom.2011.9.29 Google Scholar
  20. Hume AC, Berg P, McGlathery KJ (2011) Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique. Limnol Oceanogr 56(1):86–96. doi: 10.4319/lo.2011.56.1.0086 CrossRefGoogle Scholar
  21. Imboden DM, Wüest A (1995) Mixing mechanisms in lakes. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes, vol 4, vol 2. Springer, Berlin, pp 83–138CrossRefGoogle Scholar
  22. Jørgensen BB, Des Marais DJ (1990) The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnol Oceanogr 35(6):1343–1355CrossRefPubMedGoogle Scholar
  23. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30(1):111–122CrossRefGoogle Scholar
  24. Knösche R (2006) Organic sediment nutrient concentrations and their relationship with the hydrological connectivity of floodplain waters (River Havel, NE Germany). Hydrobiologia 560(1):63–76. doi: 10.1007/s10750-005-0983-x CrossRefGoogle Scholar
  25. Li J, Crowe SA, Miklesh D, Kistner M, Canfield DE, Katsev S (2012) Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnol Oceanogr 57(6):1634–1650. doi: 10.4319/lo.2012.57.6.1634 CrossRefGoogle Scholar
  26. Long MH, Berg P, de Beer D, Zieman JC (2013) In situ coral reef oxygen metabolism: an eddy correlation study. PLoS ONE 8(3):e58581. doi: 10.1371/journal.pone.0058581 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Longhi D, Bartoli M, Nizzoli D, Viaroli P (2013) Benthic processes in fresh water fluffy sediments undergoing resuspension. J Limnol 72(1):1–12. doi: 10.4081/jlimnol.2013.e1 CrossRefGoogle Scholar
  28. Lorke A, Peeters F (2006) Toward a unified scaling relation for interfacial fluxes. J Phys Oceanogr 36:955–961CrossRefGoogle Scholar
  29. Lorke A, Wuest A (2005) Application of coherent ADCP for turbulence measurements in the bottom boundary layer. J Atmos Ocean Technol 22(11):1821–1828. doi: 10.1175/Jtech1813.1 CrossRefGoogle Scholar
  30. Lorke A, Muller B, Maerki M, Wuest A (2003) Breathing sediments: the control of diffusive transport across the sediment–water interface by periodic boundary-layer turbulence. Limnol Oceanogr 48(6):2077–2085CrossRefGoogle Scholar
  31. Lorke A, McGinnis DF, Maeck A, Fischer H (2012) Effect of ship locking on sediment oxygen uptake in impounded rivers. Water Resour Res 48(12):1–7. doi: 10.1029/2012wr012483 Google Scholar
  32. Lorke A, McGinnis DF, Maeck A (2013) Eddy-correlation measurements of benthic fluxes under complex flow conditions: effects of coordinate transformations and averaging time scales. Limnol Oceanogr Methods 11:425–437. doi: 10.4319/lom.2013.11.425 CrossRefGoogle Scholar
  33. Lorrai C, McGinnis DF, Berg P, Brand A, Wüest A (2010) Application of oxygen eddy correlation in aquatic systems. J Atmos Ocean Technol 27(9):1533–1546. doi: 10.1175/2010jtecho723.1 CrossRefGoogle Scholar
  34. Maeck A, Lorke A (2014) Ship-lock induced surges in an impounded river and their impact on sub-daily flow velocity variation. River Res Appl 30:494–507. doi: 10.1002/rra.2648 CrossRefGoogle Scholar
  35. Maeck A, Delsontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47(15):8130–8137. doi: 10.1021/es4003907 PubMedGoogle Scholar
  36. McGinnis DF, Berg P, Brand A, Lorrai C, Edmonds TJ, Wüest A (2008) Measurements of eddy correlation oxygen fluxes in shallow freshwaters: towards routine applications and analysis. Geophys Res Lett 35(4):1–5. doi: 10.1029/2007gl032747 CrossRefGoogle Scholar
  37. McGinnis DF, Cherednichenko S, Sommer S, Berg P, Rovelli L, Schwarz R, Glud RN, Linke P (2011) Simple, robust eddy correlation amplifier for aquatic dissolved oxygen and hydrogen sulfide flux measurements. Limnol Oceanogr Methods 9:340–347CrossRefGoogle Scholar
  38. Mori N, Suzuki T, Kakuno S (2007) Noise of acoustic Doppler velocimeter data in bubbly flows. ASCE J Eng Mech Div 133(1):122–125. doi: 10.1061//asce/0733-9399/2007/133:1/122 CrossRefGoogle Scholar
  39. Peter AR, Jens H, Ronny L, Sebastian S, Cory M, Mark H, David B, Robert S, Emilio M, Christoph H, Pirkko K, Hans D, Michel M, Philippe C, Peter G (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359. doi: 10.1038/nature12760 CrossRefGoogle Scholar
  40. Prigent C, Papa F, Aires F, Jimenez C, Rossow WB, Matthews E (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys Res Lett 39(8):1–5. doi: 10.1029/2012gl051276 CrossRefGoogle Scholar
  41. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Godderis Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6(8):597–607. doi: 10.1038/ngeo1830 CrossRefGoogle Scholar
  42. Scalo C, Piomelli U, Boegman L (2012) Large-eddy simulation of oxygen transfer to organic sediment beds. J Geophys Res 117(C6):C06005. doi: 10.1029/2011jc007289 CrossRefGoogle Scholar
  43. Scalo C, Boegman L, Piomelli U (2013) Large-eddy simulation and low-order modeling of sediment-oxygen uptake in a transitional oscillatory flow. J Geophys Res Oceans 118(4):1926–1939. doi: 10.1002/jgrc.20113 CrossRefGoogle Scholar
  44. Sobek S, Durisch-Kaiser E, Zurbrugg R, Wongfun N, Wessels M, Pasche N, Wehrli B (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243–2254. doi: 10.4319/lo.2009.54.6.2243 CrossRefGoogle Scholar
  45. Steinberger N, Hondzo M (1999) Diffusional mass transfer at sediment–water interface. J Environ Eng 125(2):192–200CrossRefGoogle Scholar
  46. Tomaszek JA, Czerwieniec E (2003) Denitrification and oxygen consumption in bottom sediments: factors influencing rates of the processes. Hydrobiologia 504(1–3):59–65. doi: 10.1023/B:HYDR.0000008508.81690.10 CrossRefGoogle Scholar
  47. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Wachenfeldt Ev, Weyhenmeyera GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6, part 2):2298–2314CrossRefGoogle Scholar
  48. Trimmer M, Grey J, Heppell CM, Hildrew AG, Lansdown K, Stahl H, Yvon-Durocher G (2012) River bed carbon and nitrogen cycling: state of play and some new directions. Sci Total Environ 434:143–158. doi: 10.1016/j.scitotenv.2011.10.074 CrossRefPubMedGoogle Scholar
  49. Veenstra JN, Nolen SL (1991) In-situ sediment oxygen demand in five Southwestern U.S. Lakes. Water Res 25(3):351–354CrossRefGoogle Scholar
  50. Wahl T (2000) Analyzing ADV data using WinADV. In: Hotchkiss RH, Glade M (eds) Building partnerships. American Society of Civil Engineers, pp 1–10. doi: 10.1061/40517(2000)300
  51. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res Oceanogr Abstr 17(4):721–735. doi: 10.1016/0011-7471(70)90037-9 CrossRefGoogle Scholar
  52. Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412. doi: 10.1146/annurev.fluid.35.101101.161220 CrossRefGoogle Scholar
  53. Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487(7408):472–476. doi: 10.1038/nature11205 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Erni Murniati
    • 1
    Email author
  • Sebastian Geissler
    • 1
  • Andreas Lorke
    • 1
  1. 1.Institute for Environmental SciencesUniversity of Koblenz-LandauLandauGermany

Personalised recommendations