Advertisement

Aquatic Sciences

, Volume 76, Issue 3, pp 353–373 | Cite as

Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching

  • John R. Helms
  • Jingdong Mao
  • Aron Stubbins
  • Klaus Schmidt-Rohr
  • Robert G. M. Spencer
  • Peter J. Hernes
  • Kenneth Mopper
Research Article

Abstract

Two water samples from the Great Dismal Swamp National Wildlife Refuge with high dissolved organic matter (DOM) concentrations (51 and 121 mg C L−1) were subjected to ultraviolet (UV) light for up to 110 days. During the course of the irradiations, 74–88 % of the original dissolved organic carbon was lost along with 95–99 % of the absorption at 300 nm. Based on changes observed during light exposure, three pools of DOM were identified: photo-labile, photo-refractory, and photo-produced compounds. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to determine structural moieties characteristic to each of these pools. These analyses showed aromatic carbons were preferentially removed while carbohydrate-like and amide/peptide-like carbons were preserved during UV exposure. An increase in carbon normalized 13C NMR signal in the 0–50 ppm region suggests that alkyl moieties were produced, while FTIR signal at 1,745 cm−1 and two-dimensional 1H–13C NMR results confirmed the photochemical production of acetate. Several properties typically used to trace terrigenous DOM in ocean margin and marine environments were significantly altered. Optical properties, including absorption spectral slopes and fluorescence indices, as well as carbon-normalized lignin yields shifted from terrestrial values towards those more typical of coastal or open ocean samples. The loss of terrestrial signatures during irradiation highlights the difficulty faced when quantifying the contribution of terrigenous DOM to aquatic carbon pools.

Keywords

CDOM Photobleaching Swamp UV–vis NMR Biomarkers FTIR 

Notes

Acknowledgments

The authors would like to thank David Burdige for the use of the spectrofluorometer, Patrick Hatcher for the use of the TOC analyzer and freeze-dryer, and Hongmei Chen for assistance with TOC measurements. Hussain Abdulla assisted with FTIR data treatment. Rachael Dyda provided lignin measurements. Patrick Hatcher, Richard Zimmerman, and Hussain Abdulla provided helpful comments on an early version of this manuscript. This research was supported by National Science Foundation grant OCE-0728634.

Supplementary material

27_2014_340_MOESM1_ESM.doc (288 kb)
Supplementary material 1 (DOC 288 kb)

References

  1. Abdulla HAN, Minor EC, Dias RF, Hatcher PG (2010) Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C-NMR. Geochim Cosmochim Acta 74:3815–3838. doi: 10.1016/j.gca.2010.04.006 Google Scholar
  2. Aluwihare LI, Repeta DJ, Pantoja S, Johnson CG (2005) Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 308(5724):1007–1010. doi: 10.1126/science.1108925 PubMedGoogle Scholar
  3. Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characterization of dissolved organic matter in the ocean. Science 255:1561–1564. doi: 10.1126/science.255.5051.1561 PubMedGoogle Scholar
  4. Benner R, Benitz-Nelson B, Kaiser K, Amon RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic ocean. Geophys Res Lett 31:L05305. doi: 10.1029/2003GL019251 Google Scholar
  5. Bennet AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958Google Scholar
  6. Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43(5):885–895. doi: 10.4319/lo.1998.43.5.0885 Google Scholar
  7. Bertilsson S, Stepanauskas R, Cuadros-Hannson R, Graneli W, Wikner J, Tranvik L (1999) Photochemically induced changes in bioavailable carbon and nitrogen pools in boreal watersheds. Aquat Microb Ecol 19:47–56. doi: 10.3354/ame019047 Google Scholar
  8. Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108(49):19473–19481. doi: 10.1073/pnas.1017982108 PubMedCentralPubMedGoogle Scholar
  9. Bianchi TS, Filley T, Dria K, Hatcher PG (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim Cosmochim Acta 68(5):959–967. doi: 10.1016/j.gca.2003.07.011 Google Scholar
  10. Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV-vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280. doi: 10.1016/j.orggeochem.2009.11.002 Google Scholar
  11. Birdwell JE, Valsaraj KT (2010) Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescnece spectroscopy. Atmos Environ 44(27):3246–3253. doi: 10.1016/j.atmosenv.2010.05.055 Google Scholar
  12. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 508–545Google Scholar
  13. Bockman TM, Hubig SM, Kochi JK (1996) Direct observation of carbon–carbon bond cleavage in ultrafast decarboxylations. J Am Chem Soc 118:4502–4503. doi: 10.1021/ja960112j Google Scholar
  14. Boehme J, Coble PG, Conmy R, Stovall-Leonard A (2004) Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-diminsional fluorescence in the Gulf of Mexico. Mar Chem 89:3–14. doi: 10.1016/j.marchem.2004.03.019 Google Scholar
  15. Burdige DJ, Kline SW, Chen W (2004) Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem 89:289–311. doi: 10.1016/j.marchem.2004.02.015 Google Scholar
  16. Chen M, Price RM, Yamashita Y, Jaffe′ R (2010) Comparative study of dissolved organic matter from groundwater in the Florida coastal Everglades using multi-dimensional spctrofluorometry combined with multivariate statistics. Appl Geochem 25:872–880. doi: 10.1016/j.apgeochem.2010.03.005 Google Scholar
  17. Chin Y-P, Aiken G, O’Loughlin EO (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi: 10.1021/es00060a015 PubMedGoogle Scholar
  18. Coble PG (1996) Characterisation of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346. doi: 10.1016/0304-4203(95)00062-3 Google Scholar
  19. Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107(2):402–419. doi: 10.1021/cr050350+ PubMedGoogle Scholar
  20. Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res Part II 45(10–11):2195–2223. doi: 10.1016/S0967-0645(98)00068-X Google Scholar
  21. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi: 10.1021/es0506962 PubMedGoogle Scholar
  22. Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Cont Shelf Res 24:833–858. doi: 10.1016/j.csr.2004.02.003 Google Scholar
  23. Dalzell BJ, Minor EC, Mopper KM (2009) Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation. Org Geochem 40:243–257. doi: 10.1016/j.orggeochem.2008.10.003 Google Scholar
  24. Del Castillo CE, Coble PG, Morrell JM, Lopez JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66(1–2):35–51. doi: 10.1016/S0304-4203(99)00023-7 Google Scholar
  25. Del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Mar Chem 78:231–253. doi: 10.1016/S0304-4203(02)00036-1 Google Scholar
  26. Del Vecchio R, Blough NV (2004a) On the origin of the optical properties of humic substances. Environ Sci Technol 38:3885–3891. doi: 10.1021/es049912h PubMedGoogle Scholar
  27. Del Vecchio R, Blough NV (2004b) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem 89:169–187. doi: 10.1016/j.marchem.2004.02.027 Google Scholar
  28. Del Vecchio R, Subramaniam A (2004) Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean. J Geophys Res 109:C11001. doi: 10.1029/2004JC002503 Google Scholar
  29. Deuser W (1988) Whither organic carbon? Nature 332:396–397. doi: 10.1038/332396a0 Google Scholar
  30. Dittmar T, Whitehead K, Minor EC, Koch BP (2007) Tracing terrigeneous dissolved organic matter and its photochemical decay in the ocean by using liquid chromatography/mass spectrometry. Mar Chem 107(3):378–387Google Scholar
  31. Dixon WT (1982) Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77:1800–1809. doi: 10.1063/1.444076 Google Scholar
  32. Druffel ERM, Williams PM, Robertson K, Griffin S, Jull A, Donahue D, Toolin L, Linick TW (1989) Radiocarbon in dissolved organic and inorganic carbon from the central North Pacific. Radiocarbon 31(3):523–532Google Scholar
  33. Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic PressGoogle Scholar
  34. Faust BC, Zepp RG (1993) Photochemistry of aqueous iron (III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522Google Scholar
  35. Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigeneous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57 (in press)Google Scholar
  36. Goldstone JV, Voelker BM (2000) Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters. Environ Sci Technol 34:1043–1048. doi: 10.1021/es9905445 Google Scholar
  37. Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM (2002) Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372. doi: 10.1021/es0109646 PubMedGoogle Scholar
  38. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515PubMedGoogle Scholar
  39. Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39(8):1903–1916Google Scholar
  40. Green FI, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39(2–3):113–124Google Scholar
  41. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectroscopy. Wiley Interscience, New JerseyGoogle Scholar
  42. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gab between terrestrial and aquatic ecology. Ecology 91(10):2850–2861PubMedGoogle Scholar
  43. Hatcher PG (1987) Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance. Org Geochem 11:31–39. doi: 10.1016/0146-6380(87)90049-0 Google Scholar
  44. Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178. doi: 10.1021/ac00239a007 Google Scholar
  45. Hedges JI, Hatcher PG, Ertel JR, Meyers-Schulte KJ (1992) A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry. Geochim Cosmochim Acta 56:1753–1757. doi: 10.1016/0016-7037(92)90241-A Google Scholar
  46. Helms JR, Stubbins A, Ritchie J, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969. doi: 10.4319/lo.2008.53.3.0955 Google Scholar
  47. Helms JR, Mao J, Schmidt-Rohr K, Abdulla H, Mopper K (2013a) Photochemical flocculation of terrestrial dissolved organic matter and iron. Geochim Cosmochim Acta 121:398–413Google Scholar
  48. Helms JR, Stubbins A, Perdue EM, Green NW, Chen H, Mopper K (2013b) Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar Chem 155:81–91. doi: 10.1016/j.marchem.2013.05.015 Google Scholar
  49. Hernes PJ, Benner R (2002) Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep-Sea Res Part I 49:2119–2132. doi: 10.1016/S0967-0637(02)00128-0 Google Scholar
  50. Hernes PJ, Benner R (2003) Photochemical and microbial degradation of dissolved lignin phenol: Implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res Ocean. doi: 10.1029/2002JC001421 Google Scholar
  51. Hernes PJ, Benner R (2006) Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar Chem 100:66–79. doi: 10.1016/j.marchem.2005.11.003 Google Scholar
  52. Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res: Biogeosciences 114(G4):G00F03. doi: 10.1029/2009JG000938
  53. Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37:501–510. doi: 10.1016/j.orggeochem.2005.11.003 Google Scholar
  54. Hopmans EC, Weijers JWH, Schefu E, Herfort L, Sinninghe Damste JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224(1–2):107–116. doi: 10.1016/j.epsl.2004.05.012 Google Scholar
  55. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719. doi: 10.1016/j.orggeochem.2009.03.002 Google Scholar
  56. Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Sondergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:129–148. doi: 10.1016/j.marchem.2011.05.002 Google Scholar
  57. Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances: a reflection of land use history in a fen area. Biogeochem 47(2):219–238. doi: 10.1007/BF00994924 Google Scholar
  58. Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P (2003) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142. doi: 10.1016/S0038-0717(03)00165-2 Google Scholar
  59. Kieber RJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol Oceanogr 35:1503–1515. doi: 10.1021/es00080a003 Google Scholar
  60. Kieber RJ, Willey JD, Whitehead RF, Reid SN (2007) Photobleaching of chromophoric dissolved organic matter (CDOM) in rainwater. J Atmos Chem 58:219–235. doi: 10.1007/s10874-007-9089-3 Google Scholar
  61. Kourafalou VH, Oey L-Y, Wang JD, Lee TN (1996) The fate of river discharge on the continental shelf 1. Modeling the river plume and the inner shelf coastal current. J Geophys Res 101(C2):3415–3434. doi: 10.1029/95JC03024 Google Scholar
  62. Kowalczuk P, Cooper WJ, Whitehead RF, Durako MJ, Sheldon W (2003) Characterization of CDOM in an organic rich river and surrounding coastal ocean in the South Atlantic Bight. Aquat Sci 65:381–398. doi: 10.1007/s00027-003-0678-1 Google Scholar
  63. Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37. doi: 10.1016/j.marchem.2004.06.038 Google Scholar
  64. Kulovaara M, Corin N, Backlund P, Tervo J (1996) Impact of UV254 radiation on aquatic humic substances. Chemosphere 33(5):783–790. doi: 10.1016/0045-6535(96)00233-0 Google Scholar
  65. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New YorkGoogle Scholar
  66. Lee Z, Hu C, Shang S, Du K, Lewis M, Arnone R, Brewin R (2013) Penetration of UV–visible solar radiation in the global oceans: insights from ocean color remote sensing. J Geophys Res: Oceans 118:1–15. doi: 10.1002/jgrc.20308 Google Scholar
  67. Leifer A (1988) The kinetics of environmental aquatic photochemistry: theory and practice. American Chemical Society, Washington DCGoogle Scholar
  68. Loiselle SA, Bracchini L, Datillo AM, Ricci M, Tognazzi A, Cozar A, Rossi C (2009) Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol Oceanogr 54(2):590–597. doi: 10.4319/lo.2009.54.2.0590 Google Scholar
  69. Ma J, Del Vecchio R, Golanoski K, Boyle E, Blough NV (2010) Optical properties of humic substances and CDOM: effects of borohydride reduction. Environ Sci Technol 44(14):5395–5402. doi: 10.1021/es100880q PubMedGoogle Scholar
  70. Maie N, Yang C-Y, Miyoshi T, Parish K, Jaffe′ R (2005) Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnol Oceanogr 50:23–35Google Scholar
  71. Maie N, Scully NM, Pisani O, Jaffe′ R (2007) Compostion of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–570PubMedGoogle Scholar
  72. Mao J-D, Schmidt-Rohr K (2003) Recoupled long-range C–H dipolar dephasing in solid-state NMR, and its use for selection of fused aromatic rings. J Magn Reson 162(1):217–227. doi: 10.1016/S1090-7807(03)00012-0 PubMedGoogle Scholar
  73. Mao J-D, Schmidt-Rohr K (2004) Separation of aromatic-carbon 13C NMR signals from di-oxygen alkyl bands by a chemical-shift-anisotropy filter. Solid State Nucl Magn Reson 26:36–45. doi: 10.1016/j.ssnmr.2003.09.003 PubMedGoogle Scholar
  74. Mao J-D, Hu W-G, Ding G-W, Schmidt-Rohr K, Davies G, Ghabbour EA, Xing B (2002) Suitability of different 13C solid-state NMR techniques in the characterization of humic acids. Intern J Environ Anal Chem 82(4):183–196Google Scholar
  75. Mao J-D, Cory RM, McKnight DM, Schmidt-Rohr K (2007) Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org Geochem 38(8):1277–1292. doi: 10.1016/j.orggeochem.2007.04.005 Google Scholar
  76. Mao J-D, Chen N, Cao X (2011) Characterization of humic substances by advanced solid state NMR spectroscopy: demonstration of a systematic approach. Org Geochem 42(8):891–902. doi: 10.1016/j.orggeochem.2011.03.023 Google Scholar
  77. Mao J-D, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char in soil: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576PubMedGoogle Scholar
  78. McCallister SL, Bauer JE, Ducklow HW, Canuel EA (2006) Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Org Geochem 37(4):454–468. doi: 10.1016/j.orggeochem.2005.12.005 Google Scholar
  79. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofuorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46(1):38–48. doi: 10.4319/lo.2001.46.1.0038 Google Scholar
  80. Meyers-Schulte KJ, Hedges JI (1986) Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321:61–64. doi: 10.1038/321061a0 Google Scholar
  81. Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42(6):1317–1324. doi: 10.4319/lo.1997.42.6.1317 Google Scholar
  82. Miller WL, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys Res Lett 22:417–420. doi: 10.1029/94GL03344 Google Scholar
  83. Minor EC, Pothen J, Dalzell BJ, Abdulla H, Mopper K (2006) Effects of salinity changes on the photodegradation and ultraviolet–visible absorbance of terrestrial dissolved organic matter. Limnol Oceanogr 51(5):2181–2186. doi: 10.4319/lo.2006.51.5.2181 Google Scholar
  84. Minor EC, Dalzell BJ, Stubbins A, Mopper K (2007) Evaluating the photoalteration of estuarine dissolved organic matter using direct temperature-resolved mass spectrometry and UV–visible spectroscopy. Aquat Sci 69:440–455. doi: 10.1007/s00027-007-0897-y Google Scholar
  85. Moore WS, Sarmiento JL, Key RM (1986) Tracing the amazon component of surface Atlantic water using 228Ra, salinity, and silica. J Geophys Res 91(C2):2574–2580. doi: 10.1029/JC091iC02p02574 Google Scholar
  86. Mopper K, Stahovec WL (1986) Sources and sinks of low molecular weight organic carbonyl compounds in seawater. Mar Chem 19:305–321. doi: 10.1016/0304-4203(86)90052-6 Google Scholar
  87. Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long term photochemical and biological degradation of estuarine organic matter. Limnol Oceanogr 45(6):1254–1264. doi: 10.4319/lo.2000.45.6.1254 Google Scholar
  88. Nelson NB, Siegel DA (2002) Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 547–578Google Scholar
  89. Nelson NB, Siegel DA, Carlson CA, Swan C, Smethie WM Jr, Khatiwala S (2007) Hydrography of chromophoric dissolved organic matter in the North Atlantic. Deep-Sea Res Part I 54:710–731. doi: 10.1016/j.dsr.2007.02.006 Google Scholar
  90. Opella SJ, Frey MH (1979) Selection of nonprotonated carbon resonances in solid state nuclear magnetic resonance. J Am Chem Soc 101(19):5854–5856. doi: 10.1021/ja00513a079 Google Scholar
  91. Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386(6624):480–482. doi: 10.1038/386480a0 Google Scholar
  92. Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43(6):1297–1304. doi: 10.4319/lo.1998.43.6.1297 Google Scholar
  93. Ortega-Retuerta E, Reche I, Pulido-Villena E, Austi S, Duarte C (2010) Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean). Mar Chem 118:129–139. doi: 10.1016/j.marchem.2009.11.008 Google Scholar
  94. Osburn CL, Morris DP, Thorn KA, Moeller RE (2001) Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54(3):251–278. doi: 10.1023/A:1010657428418 Google Scholar
  95. Osburn CL, Wigdahl CR, Fritz SC, Saros JE (2011) Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains. Limnol Oceanogr 56(6):2371–2390. doi: 10.4319/lo.2011.56.6.2371 Google Scholar
  96. Para J, Coble PG, Charriere B, Tedetti M, Fontana C, Sempere R (2010) Fluorescence and absorption properties of chromophoric dissolved organic matter CDOM in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhone River. Biogeosciences 7:4083–4103. doi: 10.5194/bg-7-4083-2010 Google Scholar
  97. Reche I, Pace ML, Cole JJ (2000) Modeled effects of dissolved organic carbon and solar spectra on photobleaching in lake ecosystems. Ecosystems 3:419–432. doi: 10.1007/s100210000038 Google Scholar
  98. Riemer DD, Milne PJ, Zika RG, Pos WH (2000) Photoproduction of nonmethane hydrocarbons (NMHCs) in seawater. Mar Chem 71(3–4):177–198. doi: 10.1016/S0304-4203(00)00048-7 Google Scholar
  99. Rodriguez-Zúñiga U, Milori D, Da Silva W, Oliveira L, Rocha J (2008) Changes in optical properties caused by UV-irradiation of aquatic humic substances from the Amazon River basin: seasonal variability evaluation. Environ Sci Technol 42:1948–1953. doi: 10.1021/es702156n PubMedGoogle Scholar
  100. Romera-Castillo C, Sarmento H, Alverez-Salgado XA, Gasol JM, Marrase C (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplonkton exudates. Appl Environ Microbiol 77(21):7490–7498. doi: 10.1128/AEM.00200-11 PubMedCentralPubMedGoogle Scholar
  101. Sarpal RS, Mopper K, Kieber DJ (1995) Absorbance properties of dissoved organic matter in Antarctic sea water. Antarct J US 30:139–140Google Scholar
  102. Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Kettrup A (1998) Structural changes in a dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere. Environ Sci Technol 32:2531–2541. doi: 10.1021/es970636z Google Scholar
  103. Scully NM, Maie N, Daily SK, Boyer JN, Jones RD, Jaffe′ R (2004) Early diagenesis of plant-derived dissolved organic matter along a wetland, mangrove, estuary ecotone. Limnol Oceanogr 49(5):1667–1678Google Scholar
  104. Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110:140–152. doi: 10.1016/j.marchem.2008.04.008 Google Scholar
  105. Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabeakanghanzi JN, Six J (2009) Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res 114:G03010. doi: 10.1029/2009JG000968 Google Scholar
  106. Spencer RGM, Aiken GR, Dyda RY, Butler KD, Bergamaschi BA, Hernes PJ (2010a) Comparison of XAD with other dissolved lignin isolation echniques and a compilation of analytical improvements for the analysis of lignin in aquatic settings. Org Geochem 41:445–453. doi: 10.1016/j.orggeochem.2010.02.004 Google Scholar
  107. Spencer RGM, Hernes PJ, Ruf R, Baker A, Dyda RY, Stubbins A, Six J (2010b) Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river Democratic Republic of Congo. J Geophys Res Biogeosci 115:G03013. doi: 10.1029/2009JG001180 Google Scholar
  108. Spencer RGM, Aiken GR, Dornblaser MM, Butler KD, Holmes RM, Fiske G, Mann PJ, Stubbins A (2013) Chromophoric dissolved organic matter export from US Rivers. Geophys Res Lett 40(8):1575–1579. doi: 10.1002/grl.50357 Google Scholar
  109. Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar Coast Shelf Sci 87(1):156–162. doi: 10.1016/j.ecss.2009.12.022 Google Scholar
  110. Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: pan Arctic trends and differences. Mar Chem 124:108–118. doi: 10.1016/j.marchem.2010.12.007 Google Scholar
  111. Stevenson FJ (1994) Humus chemistry: Genesis, composition, and reactions. Wiley, New YorkGoogle Scholar
  112. Stubbins A, Dittmar T (2012) Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol Oceanogr: Methods 10:347–352. doi: 10.4319/lom.2012.10.347 Google Scholar
  113. Stubbins A, Hubbard V, Uher G, Law CS, Upstill-Goddard RC, Aiken GR, Mopper K (2008) Relating carbon monoxide photoproduction to dissolved organic matter functionality. Environ Sci Technol 42(9):3271–3276. doi: 10.1021/es703014q PubMedGoogle Scholar
  114. Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55(4):1467–1477. doi: 10.4319/lo.2010.55.4.1467 Google Scholar
  115. Stubbins A, Niggemann J, Dittmar T (2012) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–1670. doi: 10.519/bg-9-1661-2012 Google Scholar
  116. Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71(2):104–126. doi: 10.1007/s00027-008-8082-5 Google Scholar
  117. Thorn KA, Younger SJ, Cox LG (2010) Order of functionality loss during photodegradation of aquatic humic substances. J Environ Qual 39(4):1416–1428. doi: 10.2134/jeq 2009.0408PubMedGoogle Scholar
  118. Vähätalo AV, Wetzel RG (2004) Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar Chem 89:313–326. doi: 10.1016/j.marchem.2004.03.010 Google Scholar
  119. Vähätalo AV, Wetzel RG, Paerl HW (2005) Light absorption by phytoplankton and chromophoric dissolved organic matter in the drainage basin and estuary of the Neuse River, North Carolina (USA). Freshw Biol 50(3):477–493. doi: 10.1111/j.1365-2427.2004.01335.x Google Scholar
  120. Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42:674–686. doi: 10.4319/lo.1997.42.4.0674 Google Scholar
  121. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi: 10.1021/es030360x PubMedGoogle Scholar
  122. Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40(8):1369–1380. doi: 10.4319/lo.1995.40.8.1369 Google Scholar
  123. White EM, Kieber DJ, Mopper K (2008) Determination of photochemically produced carbon dioxide in seawater. Limnol Oceanogr: Methods 6:441–453. doi: 10.4319/lom.2008.6.441 Google Scholar
  124. Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–248. doi: 10.1038/330246a0 Google Scholar
  125. Yamashita Y, Tanoue E (2003a) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271. doi: 10.1016/S0304-4203(03)00073-2 Google Scholar
  126. Yamashita Y, Tanoue E (2003b) Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar Chem 82:145–160. doi: 10.1016/S0304-4203(03)00049-5 Google Scholar
  127. Yamashita Y, Nosaka Y, Suzuki K, Ogawa H, Takahashi K, Saito H (2013) The photobleaching as a factor controlling spectral characteristics of chromophoric dissolved organic matter in open ocean. Biogeosciences Discussions 10:9989–10019Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of North Carolina WilmingtonWilmingtonUSA
  3. 3.Skidaway Institute of OceanographyMarine Sciences, University of GeorgiaSavannahUSA
  4. 4.Department of ChemistryIowa State UniversityAmesUSA
  5. 5.Woods Hole Research CenterFalmouthUSA
  6. 6.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations